Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Solve an expression involving the absolute value
Answer
See the solving process
Graph
See details
$| x - 2 | < 2$
$| x - 2 | < 2$
Solution of inequality
$0 < x < 4$
$0 < x < 4$
$ $ Solve a solution to $ x$
$| \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } | < \color{#FF6800}{ 2 }$
$ $ Divide the interval based on the value where the inside of the absolute value is 0 $ $
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) < \color{#FF6800}{ 2 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ 2 } \right ) \\ \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } < \color{#FF6800}{ 2 } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ 2 } \right )$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) < \color{#FF6800}{ 2 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ 2 } \right ) \\ \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } < \color{#FF6800}{ 2 } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ 2 } \right )$
$ $ Find the solution $ $
$\color{#FF6800}{ x } > \color{#FF6800}{ 0 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ 2 } \right ) \\ \color{#FF6800}{ x } < \color{#FF6800}{ 4 } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ 2 } \right )$
$\color{#FF6800}{ x } > \color{#FF6800}{ 0 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ 2 } \right ) \\ \color{#FF6800}{ x } < \color{#FF6800}{ 4 } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ 2 } \right )$
$ $ Make sure if the value is within the interval $ $
$\color{#FF6800}{ 0 } < \color{#FF6800}{ x } < \color{#FF6800}{ 2 } \\ \color{#FF6800}{ 2 } \leq \color{#FF6800}{ x } < \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 0 } < \color{#FF6800}{ x } < \color{#FF6800}{ 2 } \\ \color{#FF6800}{ 2 } \leq \color{#FF6800}{ x } < \color{#FF6800}{ 4 }$
$ $ Find the union of sets of each interval $ $
$\color{#FF6800}{ 0 } < \color{#FF6800}{ x } < \color{#FF6800}{ 4 }$
Solution search results
$|x-2|<|2x+3|$
Algebra
Check solution
$|x-2|<|2x+3|$
Calculus
Check solution
Q7. Solve for real $4$ $|x-2|\leq 3$
10th-13th grade
Other
Check solution
H.P. pertidaksamaan $|x-21\leq 3$
10th-13th grade
Other
Check solution
$4$ $\left(xy\right)$ $-15<-\leq 0$ $5$ NCERT $40$ Solve the $fo|loMn9$ $2$ $\left(1\right)$ $13x-21\leq \dfrac {1} {2}$ $°.$ $\left(10\right)$ $1x-21\geq 5$ $\right)$ $\left(ii\right)$ $|x+\dfrac {1} {4}\right)>\dfrac {7} {4}$ $i$ $\left(y\right)$ $|\dfrac {3x-4} {2}|\leq \dfrac {5} {12}$ pagel1
10th-13th grade
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com