Symbol

# Calculator search results

Formula
Solve an expression involving the absolute value
Graph
$| x ^ { 2 } - 5 x | < 6$
$| x ^ { 2 } - 5 x | < 6$
Solution of inequality
$- 1 < x < 2 \text{ or } 3 < x < 6$
$| x ^{ 2 } -5x | < 6$
$- 1 < x < 2$ or $x > 3$
 Solve a solution to $x$
$| \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } | < \color{#FF6800}{ 6 }$
 Divide the interval based on the value where the inside of the absolute value is 0 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } < \color{#FF6800}{ 6 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ 0 } \right ) \\ \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \right ) < \color{#FF6800}{ 6 } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ 0 } \right )$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } < \color{#FF6800}{ 6 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ 0 } \right ) \\ \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \right ) < \color{#FF6800}{ 6 } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ 0 } \right )$
 Find the solution 
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } < \color{#FF6800}{ x } < \color{#FF6800}{ 6 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ 0 } \right ) \\ \color{#FF6800}{ x } < \color{#FF6800}{ 2 }$ or $\color{#FF6800}{ x } > \color{#FF6800}{ 3 } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ 0 } \right )$
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } < \color{#FF6800}{ x } < \color{#FF6800}{ 6 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ 0 } \right ) \\ \color{#FF6800}{ x } < \color{#FF6800}{ 2 }$ or $\color{#FF6800}{ x } > \color{#FF6800}{ 3 } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ 0 } \right )$
 Make sure if the value is within the interval 
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } < \color{#FF6800}{ x } < \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 0 } \leq \color{#FF6800}{ x } < \color{#FF6800}{ 2 }$ or $\color{#FF6800}{ x } > \color{#FF6800}{ 3 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } < \color{#FF6800}{ x } < \color{#FF6800}{ 0 } \\ \color{#FF6800}{ 0 } \leq \color{#FF6800}{ x } < \color{#FF6800}{ 2 }$ or $\color{#FF6800}{ x } > \color{#FF6800}{ 3 }$
 Find the union of sets of each interval 
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } < \color{#FF6800}{ x } < \color{#FF6800}{ 2 }$ or $\color{#FF6800}{ x } > \color{#FF6800}{ 3 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture