Calculator search results

Formula
Solve an expression involving the absolute value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Graph
$| 3 x + 1 | > 2$
$| 3 x + 1 | > 2$
Solution of inequality
$x < - 1 \text{ or } x > \dfrac { 1 } { 3 }$
$| 3x+1 | > 2$
$x < - 1 $ or $ x > \dfrac { 1 } { 3 }$
$ $ Solve a solution to $ x$
$| \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } | > \color{#FF6800}{ 2 }$
$ $ Divide the interval based on the value where the inside of the absolute value is 0 $ $
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) > \color{#FF6800}{ 2 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ \frac { 1 } { 3 } } \right ) \\ \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } > \color{#FF6800}{ 2 } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ - } \color{#FF6800}{ \frac { 1 } { 3 } } \right )$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) > \color{#FF6800}{ 2 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ \frac { 1 } { 3 } } \right ) \\ \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } > \color{#FF6800}{ 2 } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ - } \color{#FF6800}{ \frac { 1 } { 3 } } \right )$
$ $ Find the solution $ $
$\color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ 1 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ \frac { 1 } { 3 } } \right ) \\ \color{#FF6800}{ x } > \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ - } \color{#FF6800}{ \frac { 1 } { 3 } } \right )$
$\color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ 1 } \left ( \text{However (or only)} \color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ \frac { 1 } { 3 } } \right ) \\ \color{#FF6800}{ x } > \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \text{However (or only)} \color{#FF6800}{ x } \geq \color{#FF6800}{ - } \color{#FF6800}{ \frac { 1 } { 3 } } \right )$
$ $ Make sure if the value is within the interval $ $
$\color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ 1 } \\ \color{#FF6800}{ x } > \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$\color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ 1 } \\ \color{#FF6800}{ x } > \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$ $ Find the union of sets of each interval $ $
$\color{#FF6800}{ x } < \color{#FF6800}{ - } \color{#FF6800}{ 1 } $ or $ \color{#FF6800}{ x } > \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$ $ 그래프 보기 $ $
Inequality
Solution search results
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo