# Calculator search results

Formula
Calculate the value
$\sqrt{ 5 } \left( 2-3 \sqrt{ 5 } \right) - \dfrac{ 2a+3 \sqrt{ 5 } }{ \sqrt{ 5 } }$
$2 \sqrt{ 5 } - 15 - \dfrac { 2 \sqrt{ 5 } a + 15 } { 5 }$
Simplify the expression
$\sqrt{ \color{#FF6800}{ 5 } } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
 Multiply each term in parentheses by $\sqrt{ 5 }$
$\sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } + \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$\sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } + \sqrt{ 5 } \times \left ( - 3 \sqrt{ 5 } \right ) - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
 Simplify the expression 
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } + \sqrt{ 5 } \times \left ( - 3 \sqrt{ 5 } \right ) - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$2 \sqrt{ 5 } + \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
 Get rid of unnecessary parentheses 
$2 \sqrt{ 5 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$2 \sqrt{ 5 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
 Simplify the expression 
$2 \sqrt{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 15 } - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$2 \sqrt{ 5 } - 15 - \color{#FF6800}{ \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } } }$
 Calculate the expression 
$2 \sqrt{ 5 } - 15 - \color{#FF6800}{ \dfrac { \left ( 2 a + 3 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 } }$
$2 \sqrt{ 5 } - 15 - \dfrac { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
 Multiply each term in parentheses by $\sqrt{ 5 }$
$2 \sqrt{ 5 } - 15 - \dfrac { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \right ) \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$2 \sqrt{ 5 } - 15 - \dfrac { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \right ) \sqrt{ \color{#FF6800}{ 5 } } + \left ( 3 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 }$
 Get rid of unnecessary parentheses 
$2 \sqrt{ 5 } - 15 - \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \sqrt{ \color{#FF6800}{ 5 } } + \left ( 3 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 }$
$2 \sqrt{ 5 } - 15 - \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \sqrt{ \color{#FF6800}{ 5 } } + \left ( 3 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 }$
 Simplify the expression 
$2 \sqrt{ 5 } - 15 - \dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ a } + \left ( 3 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 }$
$2 \sqrt{ 5 } - 15 - \dfrac { 2 \sqrt{ 5 } a + \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
 Get rid of unnecessary parentheses 
$2 \sqrt{ 5 } - 15 - \dfrac { 2 \sqrt{ 5 } a + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$2 \sqrt{ 5 } - 15 - \dfrac { 2 \sqrt{ 5 } a + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
 Simplify the expression 
$2 \sqrt{ 5 } - 15 - \dfrac { 2 \sqrt{ 5 } a + \color{#FF6800}{ 15 } } { 5 }$
Solution search results