qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\sqrt{ 5 } \left( 2-3 \sqrt{ 5 } \right) - \dfrac{ 2a+3 \sqrt{ 5 } }{ \sqrt{ 5 } }$
$2 \sqrt{ 5 } - 15 - \dfrac { 2 \sqrt{ 5 } a + 15 } { 5 }$
Simplify the expression
$\sqrt{ \color{#FF6800}{ 5 } } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$ $ Multiply each term in parentheses by $ \sqrt{ 5 }$
$\sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } + \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$\sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } + \sqrt{ 5 } \times \left ( - 3 \sqrt{ 5 } \right ) - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } + \sqrt{ 5 } \times \left ( - 3 \sqrt{ 5 } \right ) - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$2 \sqrt{ 5 } + \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$ $ Get rid of unnecessary parentheses $ $
$2 \sqrt{ 5 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$2 \sqrt{ 5 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$ $ Simplify the expression $ $
$2 \sqrt{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 15 } - \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } }$
$2 \sqrt{ 5 } - 15 - \color{#FF6800}{ \dfrac { 2 a + 3 \sqrt{ 5 } } { \sqrt{ 5 } } }$
$ $ Calculate the expression $ $
$2 \sqrt{ 5 } - 15 - \color{#FF6800}{ \dfrac { \left ( 2 a + 3 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 } }$
$2 \sqrt{ 5 } - 15 - \dfrac { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$ $ Multiply each term in parentheses by $ \sqrt{ 5 }$
$2 \sqrt{ 5 } - 15 - \dfrac { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \right ) \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$2 \sqrt{ 5 } - 15 - \dfrac { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \right ) \sqrt{ \color{#FF6800}{ 5 } } + \left ( 3 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 }$
$ $ Get rid of unnecessary parentheses $ $
$2 \sqrt{ 5 } - 15 - \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \sqrt{ \color{#FF6800}{ 5 } } + \left ( 3 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 }$
$2 \sqrt{ 5 } - 15 - \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \sqrt{ \color{#FF6800}{ 5 } } + \left ( 3 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 }$
$ $ Simplify the expression $ $
$2 \sqrt{ 5 } - 15 - \dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ a } + \left ( 3 \sqrt{ 5 } \right ) \sqrt{ 5 } } { 5 }$
$2 \sqrt{ 5 } - 15 - \dfrac { 2 \sqrt{ 5 } a + \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$ $ Get rid of unnecessary parentheses $ $
$2 \sqrt{ 5 } - 15 - \dfrac { 2 \sqrt{ 5 } a + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$2 \sqrt{ 5 } - 15 - \dfrac { 2 \sqrt{ 5 } a + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$ $ Simplify the expression $ $
$2 \sqrt{ 5 } - 15 - \dfrac { 2 \sqrt{ 5 } a + \color{#FF6800}{ 15 } } { 5 }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo