# Calculator search results

Formula
Calculate the value
$\sqrt{ 3 } + \sqrt{ 6 } \times \sqrt{ 6 } \times \sqrt{ 3 }$
$7 \sqrt{ 3 }$
Calculate the value
$\sqrt{ 3 } + \sqrt{ \color{#FF6800}{ 6 } } \sqrt{ 6 } \sqrt{ 3 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 1 } } \sqrt{ 6 } \sqrt{ 3 }$
$\sqrt{ 3 } + \left ( \sqrt{ 6 } \right ) ^ { 1 } \sqrt{ \color{#FF6800}{ 6 } } \sqrt{ 3 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\sqrt{ 3 } + \left ( \sqrt{ 6 } \right ) ^ { 1 } \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 1 } } \sqrt{ 3 }$
$\sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 1 } } \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 1 } } \sqrt{ 3 }$
 Add the exponent as the base is the same 
$\sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \sqrt{ 3 }$
$\sqrt{ 3 } + \left ( \sqrt{ 6 } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \sqrt{ 3 }$
 Add $1$ and $1$
$\sqrt{ 3 } + \left ( \sqrt{ 6 } \right ) ^ { \color{#FF6800}{ 2 } } \sqrt{ 3 }$
$\sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 6 } } \right ) ^ { \color{#FF6800}{ 2 } } \sqrt{ 3 }$
 If you square the radical sign, it will disappear 
$\sqrt{ 3 } + \color{#FF6800}{ 6 } \sqrt{ 3 }$
$\sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 3 } }$
 Calculate between similar terms 
$\color{#FF6800}{ 7 } \sqrt{ \color{#FF6800}{ 3 } }$
Solution search results