Calculator search results

Formula
Calculate the value
$\sqrt{ 27 } \times \dfrac{ 2 }{ \sqrt{ 6 } } - \sqrt{ 40 } \div \dfrac{ \sqrt{ 5 } }{ 2 }$
$- \sqrt{ 2 }$
Calculate the value
$\sqrt{ \color{#FF6800}{ 27 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 2 } { \sqrt{ 6 } } } - \sqrt{ 40 } \div \dfrac { \sqrt{ 5 } } { 2 }$
 Arrange the terms multiplied by fractions 
$\color{#FF6800}{ \dfrac { \sqrt{ 27 } \times 2 } { \sqrt{ 6 } } } - \sqrt{ 40 } \div \dfrac { \sqrt{ 5 } } { 2 }$
$\color{#FF6800}{ \dfrac { \sqrt{ 27 } \times 2 } { \sqrt{ 6 } } } - \sqrt{ 40 } \div \dfrac { \sqrt{ 5 } } { 2 }$
 Calculate the expression 
$\color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } - \sqrt{ 40 } \div \dfrac { \sqrt{ 5 } } { 2 }$
$3 \sqrt{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 40 } } \color{#FF6800}{ \div } \color{#FF6800}{ \dfrac { \sqrt{ 5 } } { 2 } }$
 Arrange the terms multiplied by fractions 
$3 \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \sqrt{ 40 } \times 2 } { \sqrt{ 5 } } }$
$3 \sqrt{ 2 } - \color{#FF6800}{ \dfrac { \sqrt{ 40 } \times 2 } { \sqrt{ 5 } } }$
 Calculate the expression 
$3 \sqrt{ 2 } - \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } \right )$
$3 \sqrt{ 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } \right )$
 Get rid of unnecessary parentheses 
$3 \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } }$
 Calculate between similar terms 
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ 2 }$
 Multiplying any number by 1 does not change the value 
$- \sqrt{ 2 }$
Solution search results