Symbol

# Calculator search results

Formula
Calculate the value
Answer
$\sqrt{ 24 } + \left( \sqrt{ 12 } + \sqrt{ 3 } \right) \div \dfrac{ 1 }{ \sqrt{ 2 } }$
$5 \sqrt{ 6 }$
Calculate the value
$\sqrt{ \color{#FF6800}{ 24 } } + \left ( \sqrt{ 12 } + \sqrt{ 3 } \right ) \div \dfrac { 1 } { \sqrt{ 2 } }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } + \left ( \sqrt{ 12 } + \sqrt{ 3 } \right ) \div \dfrac { 1 } { \sqrt{ 2 } }$
$2 \sqrt{ 6 } + \left ( \sqrt{ \color{#FF6800}{ 12 } } + \sqrt{ 3 } \right ) \div \dfrac { 1 } { \sqrt{ 2 } }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$2 \sqrt{ 6 } + \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ 3 } \right ) \div \dfrac { 1 } { \sqrt{ 2 } }$
$2 \sqrt{ 6 } + \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 3 } } \right ) \div \dfrac { 1 } { \sqrt{ 2 } }$
 Calculate between similar terms 
$2 \sqrt{ 6 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \div \dfrac { 1 } { \sqrt{ 2 } }$
$2 \sqrt{ 6 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \div } \color{#FF6800}{ \dfrac { 1 } { \sqrt{ 2 } } }$
 Arrange the terms multiplied by fractions 
$2 \sqrt{ 6 } + \color{#FF6800}{ \dfrac { 3 \sqrt{ 3 } \sqrt{ 2 } } { 1 } }$
$2 \sqrt{ 6 } + \dfrac { \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 2 } } } { 1 }$
 Simplify the expression 
$2 \sqrt{ 6 } + \dfrac { \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 6 } } } { 1 }$
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } + \dfrac { 3 \sqrt{ 6 } } { 1 }$
 Convert an equation to a fraction using $a=\dfrac{a}{1}$
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 6 } } { 1 } } + \dfrac { 3 \sqrt{ 6 } } { 1 }$
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 6 } } { 1 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 3 \sqrt{ 6 } } { 1 } }$
 Since the denominator is the same as $1$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 6 } + 3 \sqrt{ 6 } } { 1 } }$
$\dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 6 } } } { 1 }$
 Calculate between similar terms 
$\dfrac { \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 6 } } } { 1 }$
$\dfrac { 5 \sqrt{ 6 } } { \color{#FF6800}{ 1 } }$
 If the denominator is 1, the denominator can be removed 
$\color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 6 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture