Symbol

# Calculator search results

Formula
Square root
Find the approximate value
$\sqrt{ 216 }$
$6 \sqrt{ 6 }$
Find the square root
$\sqrt{ \color{#FF6800}{ 216 } }$
 Do a factorization in prime factors for the integral number inside the radical sign 
$\sqrt{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } }$
$\sqrt{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } }$
 Separate the part that can be taken out from the radical sign and the part that cannot be taken out 
$\sqrt{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } }$
$\sqrt{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 2 } ^ { 1 } \times \color{#FF6800}{ 3 } ^ { 1 } }$
 Separate the part that can be taken out of radical sign to different radical sign from the prime factor to the prime factor 
$\sqrt{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } } \sqrt{ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } } \sqrt{ \color{#FF6800}{ 2 } ^ { 1 } \times \color{#FF6800}{ 3 } ^ { 1 } }$
$\sqrt{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } } \sqrt{ 3 ^ { 2 } } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
 Get rid of the radical sign and change it to the denominator of the exponent 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ \frac { 2 } { 2 } } } \sqrt{ 3 ^ { 2 } } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
$2 ^ { \frac { 2 } { 2 } } \sqrt{ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
 Get rid of the radical sign and change it to the denominator of the exponent 
$2 ^ { \frac { 2 } { 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ \frac { 2 } { 2 } } } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
$2 ^ { \color{#FF6800}{ \frac { 2 } { 2 } } } \times 3 ^ { \frac { 2 } { 2 } } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
 Reduce the fraction to the lowest term 
$2 ^ { \color{#FF6800}{ 1 } } \times 3 ^ { \frac { 2 } { 2 } } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
$2 ^ { 1 } \times 3 ^ { \color{#FF6800}{ \frac { 2 } { 2 } } } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
 Reduce the fraction to the lowest term 
$2 ^ { 1 } \times 3 ^ { \color{#FF6800}{ 1 } } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
$2 ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 1 } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
 If the exponent is 1, get rid of it as it is unnecessary 
$2 \times 3 ^ { 1 } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
$2 \times 3 ^ { \color{#FF6800}{ 1 } } \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
 If the exponent is 1, get rid of it as it is unnecessary 
$2 \times 3 \sqrt{ 2 ^ { 1 } \times 3 ^ { 1 } }$
$2 \times 3 \sqrt{ 2 ^ { \color{#FF6800}{ 1 } } \times 3 ^ { 1 } }$
 If the exponent is 1, get rid of it as it is unnecessary 
$2 \times 3 \sqrt{ 2 \times 3 ^ { 1 } }$
$2 \times 3 \sqrt{ 2 \times 3 ^ { \color{#FF6800}{ 1 } } }$
 If the exponent is 1, get rid of it as it is unnecessary 
$2 \times 3 \sqrt{ 2 \times 3 }$
$2 \times 3 \sqrt{ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } }$
 Multiply $2$ and $3$
$2 \times 3 \sqrt{ \color{#FF6800}{ 6 } }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 6 } }$
 Simplify the expression 
$\color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 6 } }$
$\approx 14.6969$
Find the approximate value
$\sqrt{ \color{#FF6800}{ 216 } }$
 Find the approximate value of the square root 
$\approx \color{#FF6800}{ 14.6969 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture