Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\sqrt{ 2 } \left( 3- \sqrt{ 32 } \right) + \left( \sqrt{ 48 } + \sqrt{ 54 } \right) \div \sqrt{ 3 }$
$6 \sqrt{ 2 } - 4$
Calculate the value
$\sqrt{ 2 } \left ( 3 - \sqrt{ \color{#FF6800}{ 32 } } \right ) + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\sqrt{ 2 } \left ( 3 - \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } \right ) \right ) + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$\sqrt{ 2 } \left ( 3 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } \right ) \right ) + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$ $ Get rid of unnecessary parentheses $ $
$\sqrt{ 2 } \left ( 3 \color{#FF6800}{ - } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } \right ) + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$\sqrt{ \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } \right ) + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$ $ Multiply each term in parentheses by $ \sqrt{ 2 }$
$\sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } + \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } \right ) + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$\sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } + \sqrt{ 2 } \times \left ( - 4 \sqrt{ 2 } \right ) + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } + \sqrt{ 2 } \times \left ( - 4 \sqrt{ 2 } \right ) + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$3 \sqrt{ 2 } + \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 2 } } \right ) + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$ $ Get rid of unnecessary parentheses $ $
$3 \sqrt{ 2 } + \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \sqrt{ \color{#FF6800}{ 2 } } + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$3 \sqrt{ 2 } + \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \sqrt{ \color{#FF6800}{ 2 } } + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$ $ Simplify the expression $ $
$3 \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } + \left ( \sqrt{ 48 } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$3 \sqrt{ 2 } - 8 + \left ( \sqrt{ \color{#FF6800}{ 48 } } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$3 \sqrt{ 2 } - 8 + \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ 54 } \right ) \div \sqrt{ 3 }$
$3 \sqrt{ 2 } - 8 + \left ( 4 \sqrt{ 3 } + \sqrt{ \color{#FF6800}{ 54 } } \right ) \div \sqrt{ 3 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$3 \sqrt{ 2 } - 8 + \left ( 4 \sqrt{ 3 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \div \sqrt{ 3 }$
$3 \sqrt{ 2 } - 8 + \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \color{#FF6800}{ \div } \sqrt{ \color{#FF6800}{ 3 } }$
$ $ Present division as a fraction $ $
$3 \sqrt{ 2 } - 8 + \color{#FF6800}{ \dfrac { 4 \sqrt{ 3 } + 3 \sqrt{ 6 } } { \sqrt{ 3 } } }$
$3 \sqrt{ 2 } - 8 + \color{#FF6800}{ \dfrac { 4 \sqrt{ 3 } + 3 \sqrt{ 6 } } { \sqrt{ 3 } } }$
$ $ Calculate the expression $ $
$3 \sqrt{ 2 } - 8 + \color{#FF6800}{ \dfrac { 12 + 9 \sqrt{ 2 } } { 3 } }$
$3 \sqrt{ 2 } - 8 + \color{#FF6800}{ \dfrac { 12 + 9 \sqrt{ 2 } } { 3 } }$
$ $ Reduce the fraction $ $
$3 \sqrt{ 2 } - 8 + \color{#FF6800}{ 4 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } - 8 + 4 \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } }$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 2 } } - 8 + 4$
$6 \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$ $ Add $ - 8 $ and $ 4$
$6 \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo