Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\sqrt{ 2 } \left( \sqrt{ 3 } -2 \right) - \left( \sqrt{ 24 } - \sqrt{ 50 } \right)$
$- \sqrt{ 6 } + 3 \sqrt{ 2 }$
Calculate the value
$\sqrt{ \color{#FF6800}{ 2 } } \left ( \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) - \left ( \sqrt{ 24 } - \sqrt{ 50 } \right )$
$ $ Multiply each term in parentheses by $ \sqrt{ 2 }$
$\sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) - \left ( \sqrt{ 24 } - \sqrt{ 50 } \right )$
$\sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ 2 } \times \left ( - 2 \right ) - \left ( \sqrt{ 24 } - \sqrt{ 50 } \right )$
$ $ Calculate multiplication of root $ $
$\sqrt{ \color{#FF6800}{ 6 } } + \sqrt{ 2 } \times \left ( - 2 \right ) - \left ( \sqrt{ 24 } - \sqrt{ 50 } \right )$
$\sqrt{ 6 } + \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) - \left ( \sqrt{ 24 } - \sqrt{ 50 } \right )$
$ $ Simplify the expression $ $
$\sqrt{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } - \left ( \sqrt{ 24 } - \sqrt{ 50 } \right )$
$\sqrt{ 6 } - 2 \sqrt{ 2 } - \left ( \sqrt{ \color{#FF6800}{ 24 } } - \sqrt{ 50 } \right )$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\sqrt{ 6 } - 2 \sqrt{ 2 } - \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } - \sqrt{ 50 } \right )$
$\sqrt{ 6 } - 2 \sqrt{ 2 } - \left ( 2 \sqrt{ 6 } - \sqrt{ \color{#FF6800}{ 50 } } \right )$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\sqrt{ 6 } - 2 \sqrt{ 2 } - \left ( 2 \sqrt{ 6 } - \left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 2 } } \right ) \right )$
$\sqrt{ 6 } - 2 \sqrt{ 2 } - \left ( 2 \sqrt{ 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 2 } } \right ) \right )$
$ $ Get rid of unnecessary parentheses $ $
$\sqrt{ 6 } - 2 \sqrt{ 2 } - \left ( 2 \sqrt{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 2 } } \right )$
$\sqrt{ 6 } - 2 \sqrt{ 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 2 } } \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$\sqrt{ 6 } - 2 \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } + \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 2 } }$
$\sqrt{ \color{#FF6800}{ 6 } } - 2 \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } + 5 \sqrt{ 2 }$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 6 } } - 2 \sqrt{ 2 } + 5 \sqrt{ 2 }$
$- 1 \sqrt{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 2 } }$
$ $ Calculate between similar terms $ $
$- 1 \sqrt{ 6 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ 6 } + 3 \sqrt{ 2 }$
$ $ Multiplying any number by 1 does not change the value $ $
$- \sqrt{ 6 } + 3 \sqrt{ 2 }$
Solution search results
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-$8 \times $ 
$ = $ In $ \dfrac { E } { 8 } $ $ \left. \begin{array} { l } { \dfrac { 1 } { 3 } } \\ { \dfrac { 11 } { 3 } } \end{array} \right. $ $ \left. \begin{array} { l } { \dfrac { 1 } { 1 } } \\ { \dfrac { 1 } { 1 } } \end{array} \right. $ and $ \left. \begin{array} { l } { δ } \\ { 8 } \end{array} \right. $ 
Find the length of PR. $ \bar { I } $ 
$0$ 
$ \bar { u } $ 
$2$ $ = $ $ \| = $
7th-9th grade
Other
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo