# Calculator search results

Formula
Square root  Find the approximate value $\sqrt{ 18 }$
$3 \sqrt{ 2 }$
Find the square root
$\sqrt{ \color{#FF6800}{ 18 } }$
 Do a factorization in prime factors for the integral number inside the radical sign 
$\sqrt{ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } }$
$\sqrt{ \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } }$
 Separate the part that can be taken out from the radical sign and the part that cannot be taken out 
$\sqrt{ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } }$
$\sqrt{ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times 2 }$
 Separate the part that can be taken out of radical sign to different radical sign from the prime factor to the prime factor 
$\sqrt{ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } } \sqrt{ 2 }$
$\sqrt{ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } } \sqrt{ 2 }$
 Get rid of the radical sign and change it to the denominator of the exponent 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ \frac { 2 } { 2 } } } \sqrt{ 2 }$
$3 ^ { \color{#FF6800}{ \frac { 2 } { 2 } } } \sqrt{ 2 }$
 Reduce the fraction to the lowest term 
$3 ^ { \color{#FF6800}{ 1 } } \sqrt{ 2 }$
$3 ^ { \color{#FF6800}{ 1 } } \sqrt{ 2 }$
 If the exponent is 1, get rid of it as it is unnecessary 
$3 \sqrt{ 2 }$
$\approx 4.2426$
Find the approximate value
$\sqrt{ \color{#FF6800}{ 18 } }$
 Find the approximate value of the square root 
$\approx \color{#FF6800}{ 4.2426 }$
Have you found the solution you wanted?
Try again