Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\sqrt{ \left( 2- \sqrt{ 6 } \right) ^{ 2 } } - \sqrt{ \left( 4 \sqrt{ 6 } -10 \right) ^{ 2 } }$
$- 12 + 5 \sqrt{ 6 }$
Calculate the value
$\sqrt{ \left ( 2 - \sqrt{ 6 } \right ) ^ { \color{#FF6800}{ 2 } } } - \sqrt{ \left ( 4 \sqrt{ 6 } - 10 \right ) ^ { 2 } }$
$ $ Organize as the power is written in the radical sign, and the root exponent and the exponent are the same $ $
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 6 } } \right ) - \sqrt{ \left ( 4 \sqrt{ 6 } - 10 \right ) ^ { 2 } }$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 6 } } \right ) - \sqrt{ \left ( 4 \sqrt{ 6 } - 10 \right ) ^ { 2 } }$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } + \sqrt{ \color{#FF6800}{ 6 } } - \sqrt{ \left ( 4 \sqrt{ 6 } - 10 \right ) ^ { 2 } }$
$- 2 + \sqrt{ 6 } - \sqrt{ \left ( 4 \sqrt{ 6 } - 10 \right ) ^ { \color{#FF6800}{ 2 } } }$
$ $ Organize as the power is written in the radical sign, and the root exponent and the exponent are the same $ $
$- 2 + \sqrt{ 6 } - \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right ) \right )$
$- 2 + \sqrt{ 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \left ( 4 \sqrt{ 6 } - 10 \right ) \right )$
$ $ Simplify Minus $ $
$- 2 + \sqrt{ 6 } + 4 \sqrt{ 6 } - 10$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } + \sqrt{ 6 } + 4 \sqrt{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 10 }$
$ $ Find the sum of the negative numbers $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 12 } + \sqrt{ 6 } + 4 \sqrt{ 6 }$
$- 12 + \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 6 } }$
$ $ Calculate between similar terms $ $
$- 12 + \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 6 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo