# Calculator search results

Formula
Square root
Find the approximate value
$\sqrt[3]{ 256 }$
$4 \sqrt[ 3 ]{ 4 }$
Find the square root
$\sqrt[ 3 ]{ \color{#FF6800}{ 256 } }$
 Do a factorization in prime factors for the integral number inside the radical sign 
$\sqrt[ 3 ]{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 8 } } }$
$\sqrt[ 3 ]{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 8 } } }$
 Separate the part that can be taken out from the radical sign and the part that cannot be taken out 
$\sqrt[ 3 ]{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } }$
$\sqrt[ 3 ]{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \times \color{#FF6800}{ 2 } ^ { 2 } }$
 Separate the part that can be taken out of radical sign to different radical sign from the prime factor to the prime factor 
$\sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } } \sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 2 } ^ { 2 } }$
$\sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } } \sqrt[ 3 ]{ 2 ^ { 2 } }$
 Get rid of the radical sign and change it to the denominator of the exponent 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ \frac { 6 } { 3 } } } \sqrt[ 3 ]{ 2 ^ { 2 } }$
$2 ^ { \color{#FF6800}{ \frac { 6 } { 3 } } } \sqrt[ 3 ]{ 2 ^ { 2 } }$
 Reduce the fraction to the lowest term 
$2 ^ { \color{#FF6800}{ 2 } } \sqrt[ 3 ]{ 2 ^ { 2 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \sqrt[ 3 ]{ 2 ^ { 2 } }$
 Calculate power 
$\color{#FF6800}{ 4 } \sqrt[ 3 ]{ 2 ^ { 2 } }$
$4 \sqrt[ 3 ]{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } }$
 Calculate power 
$4 \sqrt[ 3 ]{ \color{#FF6800}{ 4 } }$
$\approx 6.3496$
Find the approximate value
$\sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 256 } }$
 Find the approximate value of the square root 
$\approx \color{#FF6800}{ 6.3496 }$
Solution search results