Formula

Square root

Answer

$\sqrt[ 4 ]{ 625 }$

$5$

Find the square root

$\sqrt[ 4 ]{ \color{#FF6800}{ 625 } }$

$ $ Do a factorization in prime factors for the integral number inside the radical sign $ $

$\sqrt[ 4 ]{ \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } } }$

$\sqrt[ \color{#FF6800}{ 4 } ]{ \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } } }$

$ $ Get rid of the radical sign and change it to the denominator of the exponent $ $

$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ \frac { 4 } { 4 } } }$

$5 ^ { \color{#FF6800}{ \frac { 4 } { 4 } } }$

$ $ Reduce the fraction to the lowest term $ $

$5 ^ { \color{#FF6800}{ 1 } }$

$5 ^ { \color{#FF6800}{ 1 } }$

$ $ If the exponent is 1, get rid of it as it is unnecessary $ $

$5$

Have you found the solution you wanted?

Try again