qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = \log _{ x } { \left( 4 \right) }$
$y = 0.4$
$\log_{ x } {\left( 4 \right)} = 0.4$
$x = 32$
Solve the equation
$\log _{ \color{#FF6800}{ x } } { \left( \color{#FF6800}{ 4 } \right) } = \color{#FF6800}{ 0.4 }$
$ $ Find the interval that satisfies the basic condition of each formula $ $
$\log _{ \color{#FF6800}{ x } } { \left( \color{#FF6800}{ 4 } \right) } = \color{#FF6800}{ 0.4 } \left ( \text{However (or only)} \color{#FF6800}{ x } > \color{#FF6800}{ 0 } , \color{#FF6800}{ x } \neq \color{#FF6800}{ 1 } \right )$
$\log _{ \color{#FF6800}{ x } } { \left( \color{#FF6800}{ 4 } \right) } = \color{#FF6800}{ 0.4 } \left ( \text{However (or only)} x > 0 , x \neq 1 \right )$
$ $ Organize the equation using the logarithm definition $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 32 } \left ( \text{However (or only)} x > 0 , x \neq 1 \right )$
$\color{#FF6800}{ x } = \color{#FF6800}{ 32 } \left ( \text{However (or only)} \color{#FF6800}{ x } > \color{#FF6800}{ 0 } , \color{#FF6800}{ x } \neq \color{#FF6800}{ 1 } \right )$
$ $ Confirm if the solution exists in the domain $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 32 }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo