Symbol

# Calculator search results

Formula
Solve the equation
Graph
$y = \log _{ x } { \left( 4 \right) }$
$y = \dfrac { 2 } { 3 }$
$\log_{ x } {\left( 4 \right)} = \dfrac{ 2 }{ 3 }$
$x = 8$
Solve the equation
$\log _{ \color{#FF6800}{ x } } { \left( \color{#FF6800}{ 4 } \right) } = \color{#FF6800}{ \dfrac { 2 } { 3 } }$
 Find the interval that satisfies the basic condition of each formula 
$\log _{ \color{#FF6800}{ x } } { \left( \color{#FF6800}{ 4 } \right) } = \color{#FF6800}{ \dfrac { 2 } { 3 } } \left ( \text{However (or only)} \color{#FF6800}{ x } > \color{#FF6800}{ 0 } , \color{#FF6800}{ x } \neq \color{#FF6800}{ 1 } \right )$
$\log _{ \color{#FF6800}{ x } } { \left( \color{#FF6800}{ 4 } \right) } = \color{#FF6800}{ \dfrac { 2 } { 3 } } \left ( \text{However (or only)} x > 0 , x \neq 1 \right )$
 Organize the equation using the logarithm definition 
$\color{#FF6800}{ x } = \color{#FF6800}{ 8 } \left ( \text{However (or only)} x > 0 , x \neq 1 \right )$
$\color{#FF6800}{ x } = \color{#FF6800}{ 8 } \left ( \text{However (or only)} \color{#FF6800}{ x } > \color{#FF6800}{ 0 } , \color{#FF6800}{ x } \neq \color{#FF6800}{ 1 } \right )$
 Confirm if the solution exists in the domain 
$\color{#FF6800}{ x } = \color{#FF6800}{ 8 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture