Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Solve the equation
Answer
See the solving process
Graph
See details
$y = \log _{ x } { \left( 4 \right) }$
$y = \dfrac { 2 } { 3 }$
$x = 8$
Solve the equation
$\log _{ \color{#FF6800}{ x } } { \left( \color{#FF6800}{ 4 } \right) } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 3 } } }$
$ $ Find the interval that satisfies the basic condition of each formula $ $
$\log _{ \color{#FF6800}{ x } } { \left( \color{#FF6800}{ 4 } \right) } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 3 } } } \left ( \text{However (or only)} \color{#FF6800}{ x } > \color{#FF6800}{ 0 } , \color{#FF6800}{ x } \neq \color{#FF6800}{ 1 } \right )$
$\log _{ \color{#FF6800}{ x } } { \left( \color{#FF6800}{ 4 } \right) } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 3 } } } \left ( \text{However (or only)} x > 0 , x \neq 1 \right )$
$ $ Organize the equation using the logarithm definition $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 8 } \left ( \text{However (or only)} x > 0 , x \neq 1 \right )$
$\color{#FF6800}{ x } = \color{#FF6800}{ 8 } \left ( \text{However (or only)} \color{#FF6800}{ x } > \color{#FF6800}{ 0 } , \color{#FF6800}{ x } \neq \color{#FF6800}{ 1 } \right )$
$ $ Confirm if the solution exists in the domain $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 8 }$
Solution search results
The is the statement of the Mean Value Theorem from your $te\times tb00k$ $Tneoren$ $m4.5$ $Ne8n$ Value Theorem Let f be continuous over $leclose$ interval $\left(a.b\right)aod$ $i$ $eo$ $xd$ $csnlc$ $\left(ab\right)$ $mmd$ exists at least one point cE $\left(a.b\right)$ $si1dhtba$ $f^{'}\left(c\right)=\dfrac {f\left(b\right)-f\left(a\right)} {b-a}$ What is the geometric interpretation of the conclusion of the theorem? O The tangent line to the graph of \(f\left(x\right)\) at $l\left(c1\right)$ is parallel to the secant line connecting \(\left(a,f\left(a\right)\right)\) and \(\left(b,f\left(b\right)\right)\). O The tangent line to the graph of $\left(f\left(lef\left(x\left(right\right)$ at \(c\) is the secant line connecting \(\left(a,f\left(a\right)\right)\) $ana$ \(\left(b,f\left(b\right)\right)\). O The tangent line to the graph $of$ $\left(f\left(leF\left(x\left(right\right)\left(\right)at1\left(c1\right)is$ perpendicular to the secant line connecting \(\left(a,f\left(a\right)\right)\) and A(\left(b,f\left(b\right)\right)\). O The tangent line to the graph of $\left(fleH\left(x\right)nght\right)\right)\right)$ $at$ $\left(c\right)\right)ishoizonta|$ $Tnere$ is more than one tangent line to the graph $0no$ $\left(flcf\left(x\right)night\right)\left($ $at1\left(c1\right)$
Calculus
Search count: 3,278
Check solution
In the following problem $a,b,$ b,and c represent REAL NUMBERS. The derivative of $g\left(x\right)=log _{a}\left(bx\right)+cx^{2}is$ $○$ $g^{1}\left(x\right)=\right)dfrac\left(b\right)log _{-}a\left(bx\right)\right)\left(N1n$ $a\right)+2cx1\right)$ $○$ $\left(g\left(x\right)=\right)dtracb$ $loga\left(bx\right)+2c\times \right)Nln$ a}\) $○$ $g^{'}\left(x\right)=\left(dfraC\left(a\right)log _{-}a\left(bx\right)\right)\left(ln$ $\right)+2c\times 1\right)\right)$ $○$ $g^{1}\left(x\right)=\left(dfrac\left(b$ $log _{-}a\left(bx\right)\right)\left(ln$ $a1\right)$ $○$ $\left(\left(g^{1}\left(x\right)=b$ $log _{-}a\left(bx\right)+2cx1\right)$ $○$ $g\left(x\right)=\left(dfrac\left(b$ $log _{-}a\left(bx\right)\right)\left(1ln$ $a|+2c1\right)$
Calculus
Check solution
$8$ $\left(1$ Point) $1\right)$ The\ reciprocal\\ $0+11\right)$ \left(\frac{2} $c\left(2\right)$ {5}\right)^0\ $\right)$ \ $1111s\right)$ $S$ $S1S$ $s3S$ $S4S$ $s2S$
7th-9th grade
Other
Search count: 4,895
Check solution
Can you answer this? $20$ $25$ $18$ $\left($ $\left(A\right)$ $A\right)2$ $21frac\left(5\right)\left(9\right)$ \) $\left(B\right)$ $B\right)$ $1\left(211$ $\left(C\right)$ $1\left(21$ $21+rac\left(7\right)+9\right)$ \) $\left(D\right)$ $1\left(2\right)$ 2\frac{8}{9} $ac\left(8\right)\left(9\right)$ \) $9:18PM\sqrt{} $
1st-6th grade
Algebra
Search count: 1,480
Check solution
If the sum of two consecutive numbers is $45$ and one number is $X$ .This statement in the form of equation $1s:$ $\left(1$ Point) $\right)$ $○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ $○sx+1ef\left(x+2$ $r1gnt\right)=145s$ $sx+1x=45s$
7th-9th grade
Algebra
Check solution
Which of the following rational numbers are equivalent? $0Ptionsy$ A \frac{5}{6}, \frac{30}{36} B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Search count: 5,909
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com