# Calculator search results

Formula
Solve the equation
Graph
$y = \log _{ 8 } { \left( x \right) }$
$y = \dfrac { 1 } { 3 }$
$x$-intercept
$\left ( 1 , 0 \right )$
Asymptote
$x = 0$
$\log_{ 8 } {\left( x \right)} = \dfrac{ 1 }{ 3 }$
$x = 2$
Solve the equation
$\log _{ \color{#FF6800}{ 8 } } { \left( \color{#FF6800}{ x } \right) } = \color{#FF6800}{ \dfrac { 1 } { 3 } }$
 Find the interval that satisfies the basic condition of each formula 
$\log _{ \color{#FF6800}{ 8 } } { \left( \color{#FF6800}{ x } \right) } = \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \text{However (or only)} \color{#FF6800}{ x } > \color{#FF6800}{ 0 } \right )$
$\log _{ \color{#FF6800}{ 8 } } { \left( \color{#FF6800}{ x } \right) } = \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \text{However (or only)} x > 0 \right )$
 Organize the equation using the logarithm definition 
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } \left ( \text{However (or only)} x > 0 \right )$
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } \left ( \text{However (or only)} \color{#FF6800}{ x } > \color{#FF6800}{ 0 } \right )$
 Confirm if the solution exists in the domain 
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 }$
 그래프 보기 
Graph
Solution search results