Calculator search results
Formula
Solve the equation
Answer
See the solving process
Graph
See details
$y = \log _{ 8 } { \left( x \right) }$
$y = \dfrac { 1 } { 3 }$
$x$-intercept
$\left ( 1 , 0 \right )$
Asymptote
$x = 0$
$\log_{ 8 } {\left( x \right)} = \dfrac{ 1 }{ 3 }$
$x = 2$
Solve the equation
$\log _{ \color{#FF6800}{ 8 } } { \left( \color{#FF6800}{ x } \right) } = \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$ $ Find the interval that satisfies the basic condition of each formula $ $
$\log _{ \color{#FF6800}{ 8 } } { \left( \color{#FF6800}{ x } \right) } = \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \text{However (or only)} \color{#FF6800}{ x } > \color{#FF6800}{ 0 } \right )$
$\log _{ \color{#FF6800}{ 8 } } { \left( \color{#FF6800}{ x } \right) } = \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \text{However (or only)} x > 0 \right )$
$ $ Organize the equation using the logarithm definition $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } \left ( \text{However (or only)} x > 0 \right )$
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 } \left ( \text{However (or only)} \color{#FF6800}{ x } > \color{#FF6800}{ 0 } \right )$
$ $ Confirm if the solution exists in the domain $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 }$
$ $ 그래프 보기 $ $
Graph
Solution search results
7th-9th grade
Algebra
Check solution
Calculus
Check solution
Calculus
Check solution
Calculus
Check solution
Other
Check solution
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture