Symbol

# Calculator search results

Formula
Calculate the value
$\log_{ 3 } {\left( \sqrt{ 81 } \right)} - \sqrt[3]{ 27 }$
$- 1$
Calculate the value
$\log _{ 3 } { \left( \sqrt{ \color{#FF6800}{ 81 } } \right) } - \sqrt[ 3 ]{ 27 }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$\log _{ 3 } { \left( \color{#FF6800}{ 9 } \right) } - \sqrt[ 3 ]{ 27 }$
$\log _{ 3 } { \left( \color{#FF6800}{ 9 } \right) } - \sqrt[ 3 ]{ 27 }$
 Write the number in exponential form with base $3$
$\log _{ 3 } { \left( \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \right) } - \sqrt[ 3 ]{ 27 }$
$\log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \right) } - \sqrt[ 3 ]{ 27 }$
 Simplify the expression using $\log_{a}{a^{x}}=x\times\log_{a}{a}$
$\color{#FF6800}{ 2 } \log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 3 } \right) } - \sqrt[ 3 ]{ 27 }$
$2 \log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 3 } \right) } - \sqrt[ 3 ]{ 27 }$
 The logarithm is equal to 1 if a base is same as an antilogarithm 
$2 \times \color{#FF6800}{ 1 } - \sqrt[ 3 ]{ 27 }$
$2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } - \sqrt[ 3 ]{ 27 }$
 Multiplying any number by 1 does not change the value 
$\color{#FF6800}{ 2 } - \sqrt[ 3 ]{ 27 }$
$2 - \sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 27 } }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$2 - \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
 Subtract $3$ from $2$
$\color{#FF6800}{ - } \color{#FF6800}{ 1 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture