# Calculator search results

Formula
Calculate the value
$\log_{ 3 } {\left( \dfrac{ 3 }{ 2 } \right)} +2 \log_{ 3 } {\left( \sqrt{ 54 } \right)}$
$4$
Calculate the value
$\log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ \dfrac { 3 } { 2 } } \right) } + \color{#FF6800}{ 2 } \log _{ \color{#FF6800}{ 3 } } { \left( \sqrt{ \color{#FF6800}{ 54 } } \right) }$
 Calculate addition of logarithm 
$\log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 81 } \right) }$
$\log _{ 3 } { \left( \color{#FF6800}{ 81 } \right) }$
 Write the number in exponential form with base $3$
$\log _{ 3 } { \left( \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } \right) }$
$\log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } \right) }$
 Simplify the expression using $\log_{a}{a^{x}}=x\times\log_{a}{a}$
$\color{#FF6800}{ 4 } \log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 3 } \right) }$
$4 \log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 3 } \right) }$
 The logarithm is equal to 1 if a base is same as an antilogarithm 
$4 \times \color{#FF6800}{ 1 }$
$4 \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
 Multiplying any number by 1 does not change the value 
$\color{#FF6800}{ 4 }$
Solution search results