Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
$\log_{ 3 } {\left( \dfrac{ 3 }{ 2 } \right)} +2 \log_{ 3 } {\left( \sqrt{ 54 } \right)}$
$4$
Calculate the value
$\log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ \dfrac { 3 } { 2 } } \right) } + \color{#FF6800}{ 2 } \log _{ \color{#FF6800}{ 3 } } { \left( \sqrt{ \color{#FF6800}{ 54 } } \right) }$
$ $ Calculate addition of logarithm $ $
$\log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 81 } \right) }$
$\log _{ 3 } { \left( \color{#FF6800}{ 81 } \right) }$
$ $ Write the number in exponential form with base $ 3$
$\log _{ 3 } { \left( \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } \right) }$
$\log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } \right) }$
$ $ Simplify the expression using $ \log_{a}{a^{x}}=x\times\log_{a}{a}$
$\color{#FF6800}{ 4 } \log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 3 } \right) }$
$4 \log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 3 } \right) }$
$ $ The logarithm is equal to 1 if a base is same as an antilogarithm $ $
$4 \times \color{#FF6800}{ 1 }$
$4 \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
$ $ Multiplying any number by 1 does not change the value $ $
$\color{#FF6800}{ 4 }$
Solution search results
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo