qanda-logo
apple logo
google play logo

Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
Find the value of the common log
Answer
circle-check-icon
expand-arrow-icon
$\log {\left( 16 \right)}$
$4 \log _{ 10 } { \left( 2 \right) }$
Calculate the value
$\log _{ 10 } { \left( \color{#FF6800}{ 16 } \right) }$
$ $ Write the number in exponential form with base $ 2$
$\log _{ 10 } { \left( \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \right) }$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \right) }$
$ $ Simplify the expression using $ \log_{a}{b^{x}}=x\times\log_{a}{b}$
$\color{#FF6800}{ 4 } \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 2 } \right) }$
$1.2041$
Use the common log table to find the value in next
$\log _{ 10 } { \left( \color{#FF6800}{ 16 } \right) }$
$ $ Rewrite in the scientific numeral system $ $
$\log _{ 10 } { \left( \color{#FF6800}{ 1.6 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 1.6 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
$ $ Simplify the expression using $ \log_{a}{x\times y}=\log_{a}{x}+\log_{a}{y}$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 1.6 } \right) } \color{#FF6800}{ + } \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 1.6 } \right) } + \log _{ 10 } { \left( 10 ^ { 1 } \right) }$
$ $ Find the value of $ \log _{ 10 } { \left( 1.6 \right) } $ through the common log table $ $
$\color{#FF6800}{ 0.2041 } + \log _{ 10 } { \left( 10 ^ { 1 } \right) }$
$0.2041 + \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
$ $ Simplify the expression using $ \log_{a}{a^{x}}=x$
$0.2041 + \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 0.2041 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Add $ 0.2041 $ and $ 1$
$\color{#FF6800}{ 1.2041 }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-Given the set of ordered pairs $\left(\left(-7.0\right),\left(-6,5\right),\left(-5,-3\right),\left(-1,2\right)$ $\left(1,6\right),\left(2,-2\right)$ $\left(5,3\right)\left(7,-8\right)\right)$ 
Find f(7)fAleft(7\right) 
O a 
O b -8 
6. 
$5$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logo
google play logo