qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
Find the value of the common log
Answer
circle-check-icon
expand-arrow-icon
$\log {\left( 50 \right)}$
$1 + \log _{ 10 } { \left( 5 \right) }$
Calculate the value
$\log _{ 10 } { \left( \color{#FF6800}{ 50 } \right) }$
$ $ Factor the antilogarithm with the expression in which $ 10 $ , that is the base, is included $ $
$\log _{ 10 } { \left( \color{#FF6800}{ 10 } \right) } + \log _{ 10 } { \left( \color{#FF6800}{ 5 } \right) }$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } \right) } + \log _{ 10 } { \left( 5 \right) }$
$ $ The logarithm is equal to 1 if a base is same as an antilogarithm $ $
$\color{#FF6800}{ 1 } + \log _{ 10 } { \left( 5 \right) }$
$1.6990$
Use the common log table to find the value in next
$\log _{ 10 } { \left( \color{#FF6800}{ 50 } \right) }$
$ $ Rewrite in the scientific numeral system $ $
$\log _{ 10 } { \left( \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
$ $ Simplify the expression using $ \log_{a}{x\times y}=\log_{a}{x}+\log_{a}{y}$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 5 } \right) } \color{#FF6800}{ + } \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 5 } \right) } + \log _{ 10 } { \left( 10 ^ { 1 } \right) }$
$ $ Find the value of $ \log _{ 10 } { \left( 5 \right) } $ through the common log table $ $
$\color{#FF6800}{ 0.6990 } + \log _{ 10 } { \left( 10 ^ { 1 } \right) }$
$0.6990 + \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
$ $ Simplify the expression using $ \log_{a}{a^{x}}=x$
$0.6990 + \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 0.6990 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Add $ 0.6990 $ and $ 1$
$\color{#FF6800}{ 1.6990 }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo