# Calculator search results

Formula
Find the value of the common log
$\log {\left( 18 \right)}$
$1.2553$
Use the common log table to find the value in next
$\log _{ 10 } { \left( \color{#FF6800}{ 18 } \right) }$
 Rewrite in the scientific numeral system 
$\log _{ 10 } { \left( \color{#FF6800}{ 1.8 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 1.8 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
 Simplify the expression using $\log_{a}{x\times y}=\log_{a}{x}+\log_{a}{y}$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 1.8 } \right) } \color{#FF6800}{ + } \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 1.8 } \right) } + \log _{ 10 } { \left( 10 ^ { 1 } \right) }$
 Find the value of $\log _{ 10 } { \left( 1.8 \right) }$ through the common log table 
$\color{#FF6800}{ 0.2553 } + \log _{ 10 } { \left( 10 ^ { 1 } \right) }$
$0.2553 + \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \right) }$
 Simplify the expression using $\log_{a}{a^{x}}=x$
$0.2553 + \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 0.2553 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Add $0.2553$ and $1$
$\color{#FF6800}{ 1.2553 }$
Solution search results