Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
$\log {\left( \dfrac{ 1 }{ 50 } \right)} + \log {\left( \dfrac{ 1 }{ 20 } \right)}$
$- 3$
Calculate the value
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ \dfrac { 1 } { 50 } } \right) } + \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ \dfrac { 1 } { 20 } } \right) }$
$ $ Calculate addition of logarithm $ $
$\log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ \dfrac { 1 } { 1000 } } \right) }$
$\log _{ 10 } { \left( \dfrac { \color{#FF6800}{ 1 } } { 1000 } \right) }$
$ $ Since the logarithm of antilogarithm numbers and numerator is 1 as the fraction, add minus to the logarithm and take reciprocal to antilogarithm numbers $ $
$\color{#FF6800}{ - } \log _{ 10 } { \left( \color{#FF6800}{ 1000 } \right) }$
$- \log _{ 10 } { \left( \color{#FF6800}{ 1000 } \right) }$
$ $ Write the number in exponential form with base $ 10$
$- \log _{ 10 } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 3 } } \right) }$
$- \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 3 } } \right) }$
$ $ Simplify the expression using $ \log_{a}{a^{x}}=x\times\log_{a}{a}$
$- \left ( \color{#FF6800}{ 3 } \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } \right) } \right )$
$- \left ( 3 \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } \right) } \right )$
$ $ The logarithm is equal to 1 if a base is same as an antilogarithm $ $
$- \left ( 3 \times \color{#FF6800}{ 1 } \right )$
$- \left ( 3 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \right )$
$ $ Multiplying any number by 1 does not change the value $ $
$- \color{#FF6800}{ 3 }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo