# Calculator search results

Formula
Calculate the value
$\log {\left( \dfrac{ 1 }{ \sqrt[ 4 ]{ 10 } } \right)}$
$- \dfrac { 1 } { 4 }$
Calculate the value
$\log _{ 10 } { \left( \dfrac { \color{#FF6800}{ 1 } } { \sqrt[ 4 ]{ 10 } } \right) }$
 Since the logarithm of antilogarithm numbers and numerator is 1 as the fraction, add minus to the logarithm and take reciprocal to antilogarithm numbers 
$\color{#FF6800}{ - } \log _{ 10 } { \left( \sqrt[ 4 ]{ 10 } \right) }$
$- \log _{ 10 } { \left( \sqrt[ \color{#FF6800}{ 4 } ]{ \color{#FF6800}{ 10 } } \right) }$
 Convert the square root of the antilogarithm number of the logarithm to the power 
$- \log _{ 10 } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ \frac { 1 } { 4 } } } \right) }$
$- \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ \frac { 1 } { 4 } } } \right) }$
 Simplify the expression using $\log_{a}{a^{x}}=x\times\log_{a}{a}$
$- \left ( \color{#FF6800}{ \dfrac { 1 } { 4 } } \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } \right) } \right )$
$- \left ( \dfrac { 1 } { 4 } \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } \right) } \right )$
 The logarithm is equal to 1 if a base is same as an antilogarithm 
$- \left ( \dfrac { 1 } { 4 } \times \color{#FF6800}{ 1 } \right )$
$- \left ( \dfrac { 1 } { 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \right )$
 Multiplying any number by 1 does not change the value 
$- \color{#FF6800}{ \dfrac { 1 } { 4 } }$
Solution search results