Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
$\log {\left( \dfrac{ 1 }{ \sqrt[ 4 ]{ 10 } } \right)}$
$- \dfrac { 1 } { 4 }$
Calculate the value
$\log _{ 10 } { \left( \dfrac { \color{#FF6800}{ 1 } } { \sqrt[ 4 ]{ 10 } } \right) }$
$ $ Since the logarithm of antilogarithm numbers and numerator is 1 as the fraction, add minus to the logarithm and take reciprocal to antilogarithm numbers $ $
$\color{#FF6800}{ - } \log _{ 10 } { \left( \sqrt[ 4 ]{ 10 } \right) }$
$- \log _{ 10 } { \left( \sqrt[ \color{#FF6800}{ 4 } ]{ \color{#FF6800}{ 10 } } \right) }$
$ $ Convert the square root of the antilogarithm number of the logarithm to the power $ $
$- \log _{ 10 } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ \frac { 1 } { 4 } } } \right) }$
$- \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ \frac { 1 } { 4 } } } \right) }$
$ $ Simplify the expression using $ \log_{a}{a^{x}}=x\times\log_{a}{a}$
$- \left ( \color{#FF6800}{ \dfrac { 1 } { 4 } } \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } \right) } \right )$
$- \left ( \dfrac { 1 } { 4 } \log _{ \color{#FF6800}{ 10 } } { \left( \color{#FF6800}{ 10 } \right) } \right )$
$ $ The logarithm is equal to 1 if a base is same as an antilogarithm $ $
$- \left ( \dfrac { 1 } { 4 } \times \color{#FF6800}{ 1 } \right )$
$- \left ( \dfrac { 1 } { 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \right )$
$ $ Multiplying any number by 1 does not change the value $ $
$- \color{#FF6800}{ \dfrac { 1 } { 4 } }$
Solution search results
search-thumbnail-$15\sqrt [4] {10} $ $+3\sqrt [4] {10} $ $3\sqrt [4] {10} -\sqrt [4] {10} -$ $-20\sqrt [4] {10} $
10th-13th grade
Other
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo