qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the limit value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$\lim_{ x \to 4 } { \left( \dfrac{ 2- \sqrt{ x } }{ 3- \sqrt{ 2x+1 } } \right) }$
$\dfrac { 3 } { 4 }$
Find the limit value
$\lim\limits_{ \color{#FF6800}{ x } \to{ \color{#FF6800}{ 4 } } }{ \left( \color{#FF6800}{ \dfrac { 2 - \sqrt{ x } } { 3 - \sqrt{ 2 x + 1 } } } \right) }$
$ $ Rationalize the numerator or denominator. $ $
$\color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 3 } { 2 } }$
$\color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 3 } { 2 } }$
$ $ Calculate the value $ $
$\color{#FF6800}{ \dfrac { 3 } { 4 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo