qanda-logo
apple logo
google play logo

Calculator search results

Formula
Organize by substituting the expression
Answer
circle-check-icon
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$\left( x+y \right) ^{ 2 } +2 \left( x+y \right) +1$
$\left ( x + y + 1 \right ) ^ { 2 }$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Substitute $ x + y $ with $ t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Do factorization $ $
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ Substitute $ t $ with $ x + y$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { 2 }$
$ $ Get rid of unnecessary parentheses $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { 2 }$
$x ^ { 2 } + 2 x y + 2 x + y ^ { 2 } + 2 y + 1$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } + 2 \left ( x + y \right ) + 1$
$ $ Expand the binomial expression $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + 2 \left ( x + y \right ) + 1$
$x ^ { 2 } + 2 x y + y ^ { 2 } + \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) + 1$
$ $ Use the law of distribution $ $
$x ^ { 2 } + 2 x y + y ^ { 2 } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } + \color{#FF6800}{ 2 } \color{#FF6800}{ y } + 1$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Sort the polynomial expressions in descending order $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$\left ( x + y + 1 \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Expand the expression $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Organize equations using specific formulas $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-Given the set of ordered pairs $\left(\left(-7.0\right),\left(-6,5\right),\left(-5,-3\right),\left(-1,2\right)$ $\left(1,6\right),\left(2,-2\right)$ $\left(5,3\right)\left(7,-8\right)\right)$ 
Find f(7)fAleft(7\right) 
O a 
O b -8 
6. 
$5$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logo
google play logo