Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( a+b \right) ^{ 2 } -2 \left( a+b \right)$
$a ^ { 2 } + 2 a b - 2 a + b ^ { 2 } - 2 b$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 2 } } - 2 \left ( a + b \right )$
 Expand the binomial expression 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } + \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } - 2 \left ( a + b \right )$
$a ^ { 2 } + 2 a b + b ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right )$
 Use the law of distribution 
$a ^ { 2 } + 2 a b + b ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b }$
$\left ( a + b \right ) \left ( a + b - 2 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right )$
 Expand the expression 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b }$
 Do factorization 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture