Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( a ^{ 2 } +4a \right) - \left( 2a ^{ 2 } -9 \right)$
$- a ^ { 2 } + 4 a + 9$
Organize polynomials
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right )$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right )$
$a ^ { 2 } + 4 a \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$a ^ { 2 } + 4 a \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 9 }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 9 }$
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + 4 a + 9$
 Organize the mononomial expression 
$\color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + 4 a + 9$
$- \left ( a ^ { 2 } - 4 a - 9 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right )$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 9 }$
$\color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 9 }$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right )$
Solution search results