Symbol

# Calculator search results

Formula
Organize by substituting the expression
Expand the expression
Factorize the expression
$\left( 2x+1 \right) ^{ 2 } -2 \left( 2x+1 \right) -8$
$\left ( 2 x - 3 \right ) \left ( 2 x + 3 \right )$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Substitute $2 x + 1$ with $t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Do factorization 
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Substitute $t$ with $2 x + 1$
$\left ( \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \left ( 2 x + 1 \right ) + 2 \right )$
 Get rid of unnecessary parentheses 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \left ( 2 x + 1 \right ) + 2 \right )$
$\left ( 2 x + 1 - 4 \right ) \left ( \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Get rid of unnecessary parentheses 
$\left ( 2 x + 1 - 4 \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( 2 x + \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( 2 x + 1 + 2 \right )$
 Subtract $4$ from $1$
$\left ( 2 x \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( 2 x + 1 + 2 \right )$
$\left ( 2 x - 3 \right ) \left ( 2 x + \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Add $1$ and $2$
$\left ( 2 x - 3 \right ) \left ( 2 x + \color{#FF6800}{ 3 } \right )$
$4 x ^ { 2 } - 9$
Organize polynomials
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } - 2 \left ( 2 x + 1 \right ) - 8$
 Expand the binomial expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ 1 } - 2 \left ( 2 x + 1 \right ) - 8$
$4 x ^ { 2 } + 4 x + 1 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) - 8$
 Organize the expression with the distributive law 
$4 x ^ { 2 } + 4 x + 1 \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } - 8$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Organize the similar terms 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \right )$
$4 x ^ { 2 } + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } + \left ( 1 - 2 - 8 \right )$
 Organize the mononomial expression 
$4 x ^ { 2 } + \color{#FF6800}{ 0 } + \left ( 1 - 2 - 8 \right )$
$4 x ^ { 2 } + 0 + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \right )$
 Arrange the constant term 
$4 x ^ { 2 } + 0 \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
$4 x ^ { 2 } \color{#FF6800}{ + } \color{#FF6800}{ 0 } - 9$
 0 does not change when you add or subtract 
$4 x ^ { 2 } - 9$
$\left ( 2 x - 3 \right ) \left ( 2 x + 3 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Expand the expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
 Factorize to use the polynomial formula of sum and difference 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
 Sort the factors 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture