# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( -x+6 \right) \left( -x-6 \right)$
$x ^ { 2 } - 36$
Organize polynomials
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 36 }$
$\left ( x - 6 \right ) \left ( x + 6 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \left ( - x - 6 \right )$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \left ( - x - 6 \right )$
$- \left ( x - 6 \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right )$
 Bind the expressions with the common factor $- 1$
$- \left ( x - 6 \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \right )$
$\color{#FF6800}{ - } \left ( x - 6 \right ) \times \left ( \color{#FF6800}{ - } \left ( x + 6 \right ) \right )$
 Since negative numbers are multiplied by an even number, remove the (-) sign 
$\left ( x - 6 \right ) \left ( x + 6 \right )$
Solution search results