qanda-logo
apple logo
google play logo

Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
Factorize the expression
Answer
circle-check-icon
$\left( -a+b+c \right) ^{ 2 }$
$a ^ { 2 } - 2 a b - 2 a c + b ^ { 2 } + 2 b c + c ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ Expand an equation $ $
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } }$
$\left ( a - b - c \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) ^ { 2 }$
$ $ Bind the expressions with the common factor $ - 1$
$\left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ Arrange the symbol inside the power $ $
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) ^ { \color{#FF6800}{ 2 } }$
Solution search results
search-thumbnail-$57.$ If $a+b+c=0$ then the value of $\left(a+b-c\right)^{3}+$ 
$\left(a-b+c\right)^{3}+\left(-a+b+c\right)^{3}$ $1S$ 
$\left(A\right)$ $3\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)$ 
$\left(B\right)$ $\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)$ 
$\left(C\right)$ $0$ $.$ 
$\left($ $D\right)$ none of these
Trigonometry
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logo
google play logo