Symbol

# Calculator search results

Formula
Organize by substituting the expression
Expand the expression
Factorize the expression
$\left( x-y \right) ^{ 2 } -4 \left( x-y \right) +4$
$\left ( x - y - 2 \right ) ^ { 2 }$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Substitute $x - y$ with $t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Do factorization 
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
 Substitute $t$ with $x - y$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { 2 }$
 Get rid of unnecessary parentheses 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { 2 }$
$x ^ { 2 } - 2 x y - 4 x + y ^ { 2 } + 4 y + 4$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } - 4 \left ( x - y \right ) + 4$
 Expand the binomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } - 4 \left ( x - y \right ) + 4$
$x ^ { 2 } - 2 x y + y ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) + 4$
 Organize the expression with the distributive law 
$x ^ { 2 } - 2 x y + y ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ 4 } \color{#FF6800}{ y } + 4$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\left ( x - y - 2 \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Organize equations using specific formulas 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { 2 }$
 Bind the expressions with the common factor $- 1$
$\left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \right ) ^ { \color{#FF6800}{ 2 } }$
 Arrange the symbol inside the power 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture