# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x-y \right) \left( y-z \right) \left( z-x \right)$
$- x ^ { 2 } y + x ^ { 2 } z + x y ^ { 2 } - x z ^ { 2 } - y ^ { 2 } z + y z ^ { 2 }$
Organize polynomials
$\left ( x - y \right ) \left ( y - z \right ) \left ( \color{#FF6800}{ z } \color{#FF6800}{ - } \color{#FF6800}{ x } \right )$
 Sort the polynomial expressions in descending order 
$\left ( x - y \right ) \left ( y - z \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ z } \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \left ( - x + z \right )$
 Organize the expression with the distributive law 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ z } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ z } \right ) \left ( - x + z \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ z } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ z } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ z } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 2 } }$
$- \left ( x - y \right ) \left ( x - z \right ) \left ( y - z \right )$
Arrange the expression in the form of factorization..
$\left ( x - y \right ) \left ( y - z \right ) \left ( \color{#FF6800}{ z } \color{#FF6800}{ - } \color{#FF6800}{ x } \right )$
 Organize the expression 
$\left ( x - y \right ) \left ( y - z \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ z } \right )$
$\left ( x - y \right ) \left ( y - z \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ z } \right )$
 Bind the expressions with the common factor $- 1$
$\left ( x - y \right ) \left ( y - z \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \right )$
$\left ( x - y \right ) \left ( y - z \right ) \times \left ( \color{#FF6800}{ - } \left ( x - z \right ) \right )$
 If you multiply negative numbers by odd numbers, move the (-) sign forward 
$- \left ( x - y \right ) \left ( y - z \right ) \left ( x - z \right )$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ z } \right )$
 Sort the factors 
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ z } \right )$
Solution search results