qanda-logo
search-icon
Symbol

Calculator search results

Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$x ^ { 3 } + \left ( - a - b - c \right ) x ^ { 2 } + \left ( a b + a c + b c \right ) x - a b c$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( x - c \right )$
$ $ Organize the expression with the distributive law $ $
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } \right ) \left ( x - c \right )$
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ c } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ c }$
$- \left ( a - x \right ) \left ( b - x \right ) \left ( c - x \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \left ( x - b \right ) \left ( x - c \right )$
$ $ Organize the expression $ $
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x - b \right ) \left ( x - c \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x - b \right ) \left ( x - c \right )$
$ $ Expand the expression $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \left ( x - b \right ) \left ( x - c \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \left ( x - b \right ) \left ( x - c \right )$
$ $ Do factorization $ $
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) \left ( x - b \right ) \left ( x - c \right )$
$- \left ( a - x \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( x - c \right )$
$ $ Organize the expression $ $
$- \left ( a - x \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x - c \right )$
$- \left ( a - x \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x - c \right )$
$ $ Expand the expression $ $
$- \left ( a - x \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( x - c \right )$
$- \left ( a - x \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( x - c \right )$
$ $ Do factorization $ $
$- \left ( a - x \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) \right ) \left ( x - c \right )$
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
$ $ Organize the expression $ $
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ x } \right )$
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ x } \right )$
$ $ Expand the expression $ $
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
$ $ Do factorization $ $
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) \right )$
$\color{#FF6800}{ - } \left ( a - x \right ) \times \left ( \color{#FF6800}{ - } \left ( b - x \right ) \right ) \times \left ( \color{#FF6800}{ - } \left ( c - x \right ) \right )$
$ $ If you multiply negative numbers by odd numbers, move the (-) sign forward $ $
$- \left ( a - x \right ) \left ( b - x \right ) \left ( c - x \right )$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture