Symbol

Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x-a \right) \left( x-b \right) \left( x-c \right)$
$x ^ { 3 } + \left ( - a - b - c \right ) x ^ { 2 } + \left ( a b + a c + b c \right ) x - a b c$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( x - c \right )$
 Organize the expression with the distributive law 
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } \right ) \left ( x - c \right )$
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ c } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ c }$
$- \left ( a - x \right ) \left ( b - x \right ) \left ( c - x \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \left ( x - b \right ) \left ( x - c \right )$
 Organize the expression 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x - b \right ) \left ( x - c \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x - b \right ) \left ( x - c \right )$
 Expand the expression 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \left ( x - b \right ) \left ( x - c \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \left ( x - b \right ) \left ( x - c \right )$
 Do factorization 
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) \left ( x - b \right ) \left ( x - c \right )$
$- \left ( a - x \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( x - c \right )$
 Organize the expression 
$- \left ( a - x \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x - c \right )$
$- \left ( a - x \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x - c \right )$
 Expand the expression 
$- \left ( a - x \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( x - c \right )$
$- \left ( a - x \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( x - c \right )$
 Do factorization 
$- \left ( a - x \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) \right ) \left ( x - c \right )$
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
 Organize the expression 
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ x } \right )$
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ x } \right )$
 Expand the expression 
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
 Do factorization 
$- \left ( a - x \right ) \times \left ( - \left ( b - x \right ) \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) \right )$
$\color{#FF6800}{ - } \left ( a - x \right ) \times \left ( \color{#FF6800}{ - } \left ( b - x \right ) \right ) \times \left ( \color{#FF6800}{ - } \left ( c - x \right ) \right )$
 If you multiply negative numbers by odd numbers, move the (-) sign forward 
$- \left ( a - x \right ) \left ( b - x \right ) \left ( c - x \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture