Symbol

# Calculator search results

Formula
Organize by substituting the expression
Expand the expression
Factorize the expression
$\left( x-5 \right) ^{ 2 } -2 \left( x-5 \right) +1$
$\left ( x - 6 \right ) ^ { 2 }$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Substitute $x - 5$ with $t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Do factorization 
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
 Substitute $t$ with $x - 5$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { 2 }$
 Get rid of unnecessary parentheses 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { 2 }$
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { 2 }$
 Find the sum of the negative numbers 
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) ^ { 2 }$
$x ^ { 2 } - 12 x + 36$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } } - 2 \left ( x - 5 \right ) + 1$
 Expand the binomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } + \color{#FF6800}{ 25 } - 2 \left ( x - 5 \right ) + 1$
$x ^ { 2 } - 10 x + 25 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) + 1$
 Organize the expression with the distributive law 
$x ^ { 2 } - 10 x + 25 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } + \color{#FF6800}{ 10 } + 1$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 25 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 25 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } + \left ( 25 + 10 + 1 \right )$
 Arrange the constant term 
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } + \left ( 25 + 10 + 1 \right )$
$x ^ { 2 } - 12 x + \left ( \color{#FF6800}{ 25 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Arrange the constant term 
$x ^ { 2 } - 12 x + \color{#FF6800}{ 36 }$
$\left ( x - 6 \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 36 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 36 }$
 Use the factoring formula, $a^{2}-2ab + b^{2} = \left(a-b\right)^{2}$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) ^ { \color{#FF6800}{ 2 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture