Calculator search results
Formula
Organize by substituting the expression
Answer
See the solving process
Expand the expression
Answer
See the solving process
Factorize the expression
Answer
See the solving process
$\left( x-5 \right) ^{ 2 } -2 \left( x-5 \right) +1$
$\left ( x - 6 \right ) ^ { 2 }$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Substitute $ x - 5 $ with $ t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Do factorization $ $
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ Substitute $ t $ with $ x - 5$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { 2 }$
$ $ Get rid of unnecessary parentheses $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { 2 }$
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { 2 }$
$ $ Find the sum of the negative numbers $ $
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) ^ { 2 }$
$x ^ { 2 } - 12 x + 36$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } } - 2 \left ( x - 5 \right ) + 1$
$ $ Expand the binomial expression $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } + \color{#FF6800}{ 25 } - 2 \left ( x - 5 \right ) + 1$
$x ^ { 2 } - 10 x + 25 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) + 1$
$ $ Organize the expression with the distributive law $ $
$x ^ { 2 } - 10 x + 25 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } + \color{#FF6800}{ 10 } + 1$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 25 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Organize the similar terms $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 25 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } + \left ( 25 + 10 + 1 \right )$
$ $ Arrange the constant term $ $
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } + \left ( 25 + 10 + 1 \right )$
$x ^ { 2 } - 12 x + \left ( \color{#FF6800}{ 25 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$ $ Arrange the constant term $ $
$x ^ { 2 } - 12 x + \color{#FF6800}{ 36 }$
$\left ( x - 6 \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Expand the expression $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 36 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 36 }$
$ $ Use the factoring formula, $ a^{2}-2ab + b^{2} = \left(a-b\right)^{2}$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) ^ { \color{#FF6800}{ 2 } }$
Solution search results
7th-9th grade
Algebra
Check solution
7th-9th grade
Other
Check solution
Calculus
Check solution
Other
Check solution
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture