# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x-4 \right) \left( x-1 \right) \left( x+2 \right) \left( x+5 \right) -19$
$x ^ { 4 } + 2 x ^ { 3 } - 21 x ^ { 2 } - 22 x + 21$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( x + 2 \right ) \left ( x + 5 \right ) - 19$
 Organize the expression with the distributive law 
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \left ( x + 2 \right ) \left ( x + 5 \right ) - 19$
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( x + 5 \right ) - 19$
 Organize the expression with the distributive law 
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right ) \left ( x + 5 \right ) - 19$
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) - 19$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 21 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 22 } \color{#FF6800}{ x } + \color{#FF6800}{ 40 } - 19$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 21 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 22 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 40 } \color{#FF6800}{ - } \color{#FF6800}{ 19 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 21 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 22 } \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 40 } \color{#FF6800}{ - } \color{#FF6800}{ 19 } \right )$
$x ^ { 4 } + 2 x ^ { 3 } - 21 x ^ { 2 } - 22 x + \left ( \color{#FF6800}{ 40 } \color{#FF6800}{ - } \color{#FF6800}{ 19 } \right )$
 Arrange the constant term 
$x ^ { 4 } + 2 x ^ { 3 } - 21 x ^ { 2 } - 22 x + \color{#FF6800}{ 21 }$
$\left ( x ^ { 2 } + x - 21 \right ) \left ( x ^ { 2 } + x - 1 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 19 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 21 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 22 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 21 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 21 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 22 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 21 }$
 Do factorization 
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 21 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
Solution search results