# Calculator search results

Formula
Expand the expression
$\left( x-3 \right) \left( x+3 \right) - \left( x+5 \right) \left( x-5 \right)$
$16$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) - \left ( x + 5 \right ) \left ( x - 5 \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } - \left ( x + 5 \right ) \left ( x - 5 \right )$
$x ^ { 2 } - 9 \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \left ( x - 5 \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$x ^ { 2 } - 9 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( x - 5 \right )$
$x ^ { 2 } - 9 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
 Organize the expression with the distributive law 
$x ^ { 2 } - 9 \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 25 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 25 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 25 } \right )$
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 9 + 25 \right )$
 Organize the mononomial expression 
$\color{#FF6800}{ 0 } + \left ( - 9 + 25 \right )$
$0 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 25 } \right )$
 Arrange the constant term 
$0 + \color{#FF6800}{ 16 }$
$\color{#FF6800}{ 0 } + 16$
 0 does not change when you add or subtract 
$16$
Solution search results