qanda-logo
search-icon
Symbol

Calculator search results

Organize by substituting the expression
Answer
circle-check-icon
expand-arrow-icon
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$\left ( x - 5 \right ) x$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Substitute $ x - 2 $ with $ t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Do factorization $ $
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$ $ Substitute $ t $ with $ x - 2$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( x - 2 \right ) + 2 \right )$
$ $ Get rid of unnecessary parentheses $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( x - 2 \right ) + 2 \right )$
$\left ( x - 2 - 3 \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$ $ Get rid of unnecessary parentheses $ $
$\left ( x - 2 - 3 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( x - 2 + 2 \right )$
$ $ Find the sum of the negative numbers $ $
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( x - 2 + 2 \right )$
$\left ( x - 5 \right ) \left ( x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$ $ Eliminate opponent number $ $
$\left ( x - 5 \right ) x$
$x ^ { 2 } - 5 x$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( x - 2 \right ) - 6$
$ $ Expand the binomial expression $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ 4 } - \left ( x - 2 \right ) - 6$
$x ^ { 2 } - 4 x + 4 \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) - 6$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$x ^ { 2 } - 4 x + 4 \color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 2 } - 6$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Organize the similar terms $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right )$
$x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + \left ( 4 + 2 - 6 \right )$
$ $ Arrange the constant term $ $
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } + \left ( 4 + 2 - 6 \right )$
$x ^ { 2 } - 5 x + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right )$
$ $ Arrange the constant term $ $
$x ^ { 2 } - 5 x + \color{#FF6800}{ 0 }$
$x ^ { 2 } - 5 x \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
$ $ 0 does not change when you add or subtract $ $
$x ^ { 2 } - 5 x$
$x \left ( x - 5 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Expand the expression $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x }$
$ $ Bind the expressions with the common factor $ x$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture