# Calculator search results

Formula
Organize by substituting the expression
Expand the expression
Factorize the expression
$\left( x-2 \right) ^{ 2 } - \left( x-2 \right) -6$
$\left ( x - 5 \right ) x$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Substitute $x - 2$ with $t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Do factorization 
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Substitute $t$ with $x - 2$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( x - 2 \right ) + 2 \right )$
 Get rid of unnecessary parentheses 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( x - 2 \right ) + 2 \right )$
$\left ( x - 2 - 3 \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Get rid of unnecessary parentheses 
$\left ( x - 2 - 3 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( x - 2 + 2 \right )$
 Find the sum of the negative numbers 
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( x - 2 + 2 \right )$
$\left ( x - 5 \right ) \left ( x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Eliminate opponent number 
$\left ( x - 5 \right ) x$
$x ^ { 2 } - 5 x$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( x - 2 \right ) - 6$
 Expand the binomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ 4 } - \left ( x - 2 \right ) - 6$
$x ^ { 2 } - 4 x + 4 \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) - 6$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$x ^ { 2 } - 4 x + 4 \color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 2 } - 6$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right )$
$x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + \left ( 4 + 2 - 6 \right )$
 Arrange the constant term 
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } + \left ( 4 + 2 - 6 \right )$
$x ^ { 2 } - 5 x + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right )$
 Arrange the constant term 
$x ^ { 2 } - 5 x + \color{#FF6800}{ 0 }$
$x ^ { 2 } - 5 x \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
 0 does not change when you add or subtract 
$x ^ { 2 } - 5 x$
$x \left ( x - 5 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x }$
 Bind the expressions with the common factor $x$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
Solution search results