$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Substitute $ x - 2 $ with $ t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Do factorization $ $
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$ $ Substitute $ t $ with $ x - 2$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( x - 2 \right ) + 2 \right )$
$ $ Get rid of unnecessary parentheses $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( x - 2 \right ) + 2 \right )$
$\left ( x - 2 - 3 \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$ $ Get rid of unnecessary parentheses $ $
$\left ( x - 2 - 3 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( x - 2 + 2 \right )$
$ $ Find the sum of the negative numbers $ $
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( x - 2 + 2 \right )$
$\left ( x - 5 \right ) \left ( x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$ $ Eliminate opponent number $ $
$\left ( x - 5 \right ) x$