# Calculator search results

Formula
Graph
$\left ( x - 1 \right ) \left ( x - 3 \right ) > 0$
$\left ( x - 1 \right ) \left ( x - 3 \right ) > 0$
Solution of inequality
$x < 1 \text{ or } x > 3$
$\left( x-1 \right) \left( x-3 \right) > 0$
$x < 1$ or $x > 3$
 Solve a solution to $x$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) > 0$
 Organize the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } > 0$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } > 0$
 Factorize the expression 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) > 0$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) > \color{#FF6800}{ 0 }$
 Values that can be $\left ( x - 3 \right ) \left ( x - 1 \right ) > 0$ are $\begin{cases} x - 3 > 0 \\ x - 1 > 0 \end{cases}$ or $\begin{cases} x - 3 < 0 \\ x - 1 < 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } > \color{#FF6800}{ 0 } \\ \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } > \color{#FF6800}{ 0 } \end{cases} \\ \begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } < \color{#FF6800}{ 0 } \\ \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } < \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } > \color{#FF6800}{ 0 } \\ \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } > \color{#FF6800}{ 0 } \end{cases} \\ \begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } < \color{#FF6800}{ 0 } \\ \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } < \color{#FF6800}{ 0 } \end{cases}$
 Solve the inequality 
$\begin{cases} \color{#FF6800}{ x } > \color{#FF6800}{ 3 } \\ \color{#FF6800}{ x } > \color{#FF6800}{ 1 } \end{cases} \\ \begin{cases} \color{#FF6800}{ x } < \color{#FF6800}{ 3 } \\ \color{#FF6800}{ x } < \color{#FF6800}{ 1 } \end{cases}$
$\begin{cases} \color{#FF6800}{ x } > \color{#FF6800}{ 3 } \\ \color{#FF6800}{ x } > \color{#FF6800}{ 1 } \end{cases} \\ \begin{cases} x < 3 \\ x < 1 \end{cases}$
 Find the intersection of sets of each interval 
$\color{#FF6800}{ x } > \color{#FF6800}{ 3 } \\ \begin{cases} x < 3 \\ x < 1 \end{cases}$
$x > 3 \\ \begin{cases} \color{#FF6800}{ x } < \color{#FF6800}{ 3 } \\ \color{#FF6800}{ x } < \color{#FF6800}{ 1 } \end{cases}$
 Find the intersection of sets of each interval 
$x > 3 \\ \color{#FF6800}{ x } < \color{#FF6800}{ 1 }$
$\color{#FF6800}{ x } > \color{#FF6800}{ 3 } \\ \color{#FF6800}{ x } < \color{#FF6800}{ 1 }$
 Find the union of sets of each interval 
$\color{#FF6800}{ x } < \color{#FF6800}{ 1 }$ or $\color{#FF6800}{ x } > \color{#FF6800}{ 3 }$
 그래프 보기 
Inequality
Solution search results