Symbol

Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x+y+2 \right) ^{ 2 } - \left( x-y-2 \right) ^{ 2 }$
$4 x y + 8 x$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( x - y - 2 \right ) ^ { 2 }$
 Expand an equation 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 4 } \color{#FF6800}{ y } + \color{#FF6800}{ 4 } - \left ( x - y - 2 \right ) ^ { 2 }$
$x ^ { 2 } + 2 x y + 4 x + y ^ { 2 } + 4 y + 4 - \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand an equation 
$x ^ { 2 } + 2 x y + 4 x + y ^ { 2 } + 4 y + 4 - \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$x ^ { 2 } + 2 x y + 4 x + y ^ { 2 } + 4 y + 4 \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$x ^ { 2 } + 2 x y + 4 x + y ^ { 2 } + 4 y + 4 \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ y } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( 2 + 2 \right ) x y + \left ( 4 + 4 \right ) x + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
 Organize the mononomial expression 
$\color{#FF6800}{ 0 } + \left ( 2 + 2 \right ) x y + \left ( 4 + 4 \right ) x + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$0 + \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y } + \left ( 4 + 4 \right ) x + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
 Arrange the constant term 
$0 + \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \left ( 4 + 4 \right ) x + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$0 + 4 x y + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
 Arrange the constant term 
$0 + 4 x y + \color{#FF6800}{ 8 } \color{#FF6800}{ x } + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$0 + 4 x y + 8 x + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
 Organize the mononomial expression 
$0 + 4 x y + 8 x + \color{#FF6800}{ 0 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$0 + 4 x y + 8 x + 0 + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ y } + \left ( 4 - 4 \right )$
 Organize the mononomial expression 
$0 + 4 x y + 8 x + 0 + \color{#FF6800}{ 0 } + \left ( 4 - 4 \right )$
$0 + 4 x y + 8 x + 0 + 0 + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
 Arrange the constant term 
$0 + 4 x y + 8 x + 0 + 0 + \color{#FF6800}{ 0 }$
$\color{#FF6800}{ 0 } + 4 x y + 8 x \color{#FF6800}{ + } \color{#FF6800}{ 0 } \color{#FF6800}{ + } \color{#FF6800}{ 0 } \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
 0 does not change when you add or subtract 
$4 x y + 8 x$
$4 x \left ( y + 2 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
 Factorize to use the polynomial formula of sum and difference 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$2 x \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
 Bind the expressions with the common factor $2$
$2 x \times \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Arrange the coefficients 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture