qanda-logo
search-icon
Symbol

Calculator search results

Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$4 x y + 8 x$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( x - y - 2 \right ) ^ { 2 }$
$ $ Expand an equation $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 4 } \color{#FF6800}{ y } + \color{#FF6800}{ 4 } - \left ( x - y - 2 \right ) ^ { 2 }$
$x ^ { 2 } + 2 x y + 4 x + y ^ { 2 } + 4 y + 4 - \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ Expand an equation $ $
$x ^ { 2 } + 2 x y + 4 x + y ^ { 2 } + 4 y + 4 - \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$x ^ { 2 } + 2 x y + 4 x + y ^ { 2 } + 4 y + 4 \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$x ^ { 2 } + 2 x y + 4 x + y ^ { 2 } + 4 y + 4 \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ y } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( 2 + 2 \right ) x y + \left ( 4 + 4 \right ) x + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$ $ Organize the mononomial expression $ $
$\color{#FF6800}{ 0 } + \left ( 2 + 2 \right ) x y + \left ( 4 + 4 \right ) x + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$0 + \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y } + \left ( 4 + 4 \right ) x + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$ $ Arrange the constant term $ $
$0 + \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \left ( 4 + 4 \right ) x + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$0 + 4 x y + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$ $ Arrange the constant term $ $
$0 + 4 x y + \color{#FF6800}{ 8 } \color{#FF6800}{ x } + \left ( 1 - 1 \right ) y ^ { 2 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$0 + 4 x y + 8 x + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$ $ Organize the mononomial expression $ $
$0 + 4 x y + 8 x + \color{#FF6800}{ 0 } + \left ( 4 - 4 \right ) y + \left ( 4 - 4 \right )$
$0 + 4 x y + 8 x + 0 + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ y } + \left ( 4 - 4 \right )$
$ $ Organize the mononomial expression $ $
$0 + 4 x y + 8 x + 0 + \color{#FF6800}{ 0 } + \left ( 4 - 4 \right )$
$0 + 4 x y + 8 x + 0 + 0 + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
$ $ Arrange the constant term $ $
$0 + 4 x y + 8 x + 0 + 0 + \color{#FF6800}{ 0 }$
$\color{#FF6800}{ 0 } + 4 x y + 8 x \color{#FF6800}{ + } \color{#FF6800}{ 0 } \color{#FF6800}{ + } \color{#FF6800}{ 0 } \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
$ $ 0 does not change when you add or subtract $ $
$4 x y + 8 x$
$4 x \left ( y + 2 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ Factorize to use the polynomial formula of sum and difference $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$2 x \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$ $ Bind the expressions with the common factor $ 2$
$2 x \times \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$ $ Arrange the coefficients $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture