Symbol

# Calculator search results

Formula
Organize by substituting the expression
Expand the expression
Factorize the expression
$\left( x+y \right) ^{ 2 } -5 \left( x+y \right) +6$
$\left ( x + y - 3 \right ) \left ( x + y - 2 \right )$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
 Substitute $x + y$ with $t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
 Do factorization 
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Substitute $t$ with $x + y$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( x + y \right ) - 2 \right )$
 Get rid of unnecessary parentheses 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \left ( x + y \right ) - 2 \right )$
$\left ( x + y - 3 \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Get rid of unnecessary parentheses 
$\left ( x + y - 3 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$x ^ { 2 } + 2 x y - 5 x + y ^ { 2 } - 5 y + 6$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } - 5 \left ( x + y \right ) + 6$
 Expand the binomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } - 5 \left ( x + y \right ) + 6$
$x ^ { 2 } + 2 x y + y ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) + 6$
 Use the law of distribution 
$x ^ { 2 } + 2 x y + y ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ y } + 6$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$\left ( x + y - 3 \right ) \left ( x + y - 2 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
 Do factorization 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture