Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x+a \right) \left( x+b \right) \left( x+c \right)$
$x ^ { 3 } + \left ( a + b + c \right ) x ^ { 2 } + \left ( a b + a c + b c \right ) x + a b c$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( x + c \right )$
 Organize the expression with the distributive law 
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } \right ) \left ( x + c \right )$
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ c } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ c } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ c }$
$\left ( a + x \right ) \left ( b + x \right ) \left ( c + x \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \right ) \left ( x + b \right ) \left ( x + c \right )$
 Organize the expression 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x + b \right ) \left ( x + c \right )$
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x + b \right ) \left ( x + c \right )$
 Expand the expression 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \right ) \left ( x + b \right ) \left ( x + c \right )$
$\left ( x + a \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( x + c \right )$
 Organize the expression 
$\left ( x + a \right ) \left ( \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x + c \right )$
$\left ( x + a \right ) \left ( \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( x + c \right )$
 Expand the expression 
$\left ( x + a \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( x + c \right )$
$\left ( x + a \right ) \left ( x + b \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ c } \right )$
 Organize the expression 
$\left ( x + a \right ) \left ( x + b \right ) \left ( \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ x } \right )$
$\left ( x + a \right ) \left ( x + b \right ) \left ( \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ x } \right )$
 Expand the expression 
$\left ( x + a \right ) \left ( x + b \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ c } \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ c } \right )$
 Sort the factors 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) \left ( \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ x } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture