Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x+3 \right) \left( x-1 \right) -3 \left( x-1 \right)$
$x ^ { 2 } - x$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) - 3 \left ( x - 1 \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } - 3 \left ( x - 1 \right )$
$x ^ { 2 } + 2 x - 3 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Organize the expression with the distributive law 
$x ^ { 2 } + 2 x - 3 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } + \color{#FF6800}{ 3 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
$x ^ { 2 } + \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } + \left ( - 3 + 3 \right )$
 Organize the mononomial expression 
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ x } + \left ( - 3 + 3 \right )$
$x ^ { 2 } - x + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
 Arrange the constant term 
$x ^ { 2 } - x + \color{#FF6800}{ 0 }$
$x ^ { 2 } - x \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
 0 does not change when you add or subtract 
$x ^ { 2 } - x$
$x \left ( x - 1 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x }$
 Bind the expressions with the common factor $x$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture