# Calculator search results

Formula
Organize by substituting the expression
Expand the expression
Factorize the expression
$\left( x+2 \right) ^{ 2 } -8 \left( x+2 \right) +16$
$\left ( x - 2 \right ) ^ { 2 }$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
 Substitute $x + 2$ with $t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
 Do factorization 
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { \color{#FF6800}{ 2 } }$
 Substitute $t$ with $x + 2$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { 2 }$
 Get rid of unnecessary parentheses 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { 2 }$
$\left ( x + \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { 2 }$
 Subtract $4$ from $2$
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { 2 }$
$x ^ { 2 } - 4 x + 4$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } - 8 \left ( x + 2 \right ) + 16$
 Expand the binomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ 4 } - 8 \left ( x + 2 \right ) + 16$
$x ^ { 2 } + 4 x + 4 \color{#FF6800}{ - } \color{#FF6800}{ 8 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) + 16$
 Organize the expression with the distributive law 
$x ^ { 2 } + 4 x + 4 \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 16 } + 16$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right )$
$x ^ { 2 } + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ x } + \left ( 4 - 16 + 16 \right )$
 Arrange the constant term 
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \left ( 4 - 16 + 16 \right )$
$x ^ { 2 } - 4 x + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right )$
 Arrange the constant term 
$x ^ { 2 } - 4 x + \color{#FF6800}{ 4 }$
$\left ( x - 2 \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Use the factoring formula, $a^{2}-2ab + b^{2} = \left(a-b\right)^{2}$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
Solution search results