Calculator search results

Formula
Organize by substituting the expression
Answer
circle-check-icon
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$\left( x+2 \right) ^{ 2 } -8 \left( x+2 \right) +16$
$\left ( x - 2 \right ) ^ { 2 }$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$ $ Substitute $ x + 2 $ with $ t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$ $ Do factorization $ $
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ Substitute $ t $ with $ x + 2$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { 2 }$
$ $ Get rid of unnecessary parentheses $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { 2 }$
$\left ( x + \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) ^ { 2 }$
$ $ Subtract $ 4 $ from $ 2$
$\left ( x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { 2 }$
$x ^ { 2 } - 4 x + 4$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } - 8 \left ( x + 2 \right ) + 16$
$ $ Expand the binomial expression $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ 4 } - 8 \left ( x + 2 \right ) + 16$
$x ^ { 2 } + 4 x + 4 \color{#FF6800}{ - } \color{#FF6800}{ 8 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) + 16$
$ $ Organize the expression with the distributive law $ $
$x ^ { 2 } + 4 x + 4 \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 16 } + 16$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$ $ Organize the similar terms $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right )$
$x ^ { 2 } + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ x } + \left ( 4 - 16 + 16 \right )$
$ $ Arrange the constant term $ $
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \left ( 4 - 16 + 16 \right )$
$x ^ { 2 } - 4 x + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right )$
$ $ Arrange the constant term $ $
$x ^ { 2 } - 4 x + \color{#FF6800}{ 4 }$
$\left ( x - 2 \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$ $ Expand the expression $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$ $ Use the factoring formula, $ a^{2}-2ab + b^{2} = \left(a-b\right)^{2}$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo