Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x+2 \right) \left( x-3 \right) -3 \left( x-3 \right)$
$x ^ { 2 } - 4 x + 3$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) - 3 \left ( x - 3 \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } - 3 \left ( x - 3 \right )$
$x ^ { 2 } - x - 6 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
 Organize the expression with the distributive law 
$x ^ { 2 } - x - 6 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } + \color{#FF6800}{ 9 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right )$
$x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } + \left ( - 6 + 9 \right )$
 Arrange the constant term 
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \left ( - 6 + 9 \right )$
$x ^ { 2 } - 4 x + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right )$
 Arrange the constant term 
$x ^ { 2 } - 4 x + \color{#FF6800}{ 3 }$
$\left ( x - 3 \right ) \left ( x - 1 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
 Use the factoring formula, $x^{2} + \left(a+b\right)x + ab = \left(x+a\right)\left(x+b\right)$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
 Sort the factors 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture