Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x+1 \right) ^{ 2 } - \left( y+1 \right) ^{ 2 }$
$x ^ { 2 } + 2 x - y ^ { 2 } - 2 y$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( y + 1 \right ) ^ { 2 }$
 Expand the binomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } + \color{#FF6800}{ 1 } - \left ( y + 1 \right ) ^ { 2 }$
$x ^ { 2 } + 2 x + 1 - \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand the binomial expression 
$x ^ { 2 } + 2 x + 1 - \left ( \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$x ^ { 2 } + 2 x + 1 \color{#FF6800}{ - } \left ( \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$x ^ { 2 } + 2 x + 1 \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y }$
$x ^ { 2 } + 2 x + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) - y ^ { 2 } - 2 y$
 Arrange the constant term 
$x ^ { 2 } + 2 x + \color{#FF6800}{ 0 } - y ^ { 2 } - 2 y$
$x ^ { 2 } + 2 x \color{#FF6800}{ + } \color{#FF6800}{ 0 } - y ^ { 2 } - 2 y$
 0 does not change when you add or subtract 
$x ^ { 2 } + 2 x - y ^ { 2 } - 2 y$
$\left ( x - y \right ) \left ( x + y + 2 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
 Factorize to use the polynomial formula of sum and difference 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \left ( x - y \right )$
 Organize the expression 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( x - y \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right )$
 Sort the factors 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture