# Calculator search results

Formula
Organize by substituting the expression
Expand the expression
Factorize the expression
$\left( x+1 \right) ^{ 2 } +4 \left( x+1 \right) -5$
$x \left ( x + 6 \right )$
Substitute and transform it into the quadratic expression to arrange an equation
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
 Substitute $x + 1$ with $t$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
$\color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
 Do factorization 
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right )$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right )$
 Substitute $t$ with $x + 1$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right )$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \left ( x + 1 \right ) + 5 \right )$
 Get rid of unnecessary parentheses 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \left ( x + 1 \right ) + 5 \right )$
$\left ( x + 1 - 1 \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right )$
 Get rid of unnecessary parentheses 
$\left ( x + 1 - 1 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right )$
$\left ( x \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( x + 1 + 5 \right )$
 Eliminate opponent number 
$x \left ( x + 1 + 5 \right )$
$x \left ( x + \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right )$
 Add $1$ and $5$
$x \left ( x + \color{#FF6800}{ 6 } \right )$
$x ^ { 2 } + 6 x$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } + 4 \left ( x + 1 \right ) - 5$
 Expand the binomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } + \color{#FF6800}{ 1 } + 4 \left ( x + 1 \right ) - 5$
$x ^ { 2 } + 2 x + 1 + \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) - 5$
 Organize the expression with the distributive law 
$x ^ { 2 } + 2 x + 1 + \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ 4 } - 5$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
$x ^ { 2 } + \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } + \left ( 1 + 4 - 5 \right )$
 Arrange the constant term 
$x ^ { 2 } + \color{#FF6800}{ 6 } \color{#FF6800}{ x } + \left ( 1 + 4 - 5 \right )$
$x ^ { 2 } + 6 x + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
 Arrange the constant term 
$x ^ { 2 } + 6 x + \color{#FF6800}{ 0 }$
$x ^ { 2 } + 6 x \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
 0 does not change when you add or subtract 
$x ^ { 2 } + 6 x$
$x \left ( x + 6 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x }$
 Bind the expressions with the common factor $x$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right )$
Solution search results