Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x+1 \right) \left( x-2 \right) \left( x+3 \right) \left( x+6 \right) +54$
$x ^ { 4 } + 8 x ^ { 3 } + 7 x ^ { 2 } - 36 x + 18$
Organize polynomials
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( x + 3 \right ) \left ( x + 6 \right ) + 54$
 Organize the expression with the distributive law 
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( x + 3 \right ) \left ( x + 6 \right ) + 54$
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( x + 6 \right ) + 54$
 Organize the expression with the distributive law 
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \left ( x + 6 \right ) + 54$
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) + 54$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } + \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } + \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 36 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 36 } + 54$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 36 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 36 } \color{#FF6800}{ + } \color{#FF6800}{ 54 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 36 } \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 36 } \color{#FF6800}{ + } \color{#FF6800}{ 54 } \right )$
$x ^ { 4 } + 8 x ^ { 3 } + 7 x ^ { 2 } - 36 x + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 36 } \color{#FF6800}{ + } \color{#FF6800}{ 54 } \right )$
 Arrange the constant term 
$x ^ { 4 } + 8 x ^ { 3 } + 7 x ^ { 2 } - 36 x + \color{#FF6800}{ 18 }$
$\left ( x ^ { 2 } + 4 x - 6 \right ) \left ( x ^ { 2 } + 4 x - 3 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 54 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 36 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 18 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 36 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 18 }$
 Do factorization 
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture