Symbol

# Calculator search results

Formula
Graph
$y = \left ( x + 1 \right ) \left ( x + 3 \right ) \left ( x + 5 \right ) \left ( x + 7 \right )$
$y = - 15$
$x$Intercept
$\left ( - 5 , 0 \right )$, $\left ( - 7 , 0 \right )$, $\left ( - 1 , 0 \right )$, $\left ( - 3 , 0 \right )$
$y$Intercept
$\left ( 0 , 105 \right )$
Derivative
$4 x ^ { 3 } + 48 x ^ { 2 } + 172 x + 176$
Seconde derivative
$12 x ^ { 2 } + 96 x + 172$
Local Minimum
$\left ( - 4 - \sqrt{ 5 } , 16 \left ( - 4 - \sqrt{ 5 } \right ) ^ { 3 } - 599 - 176 \sqrt{ 5 } + \left ( - 4 - \sqrt{ 5 } \right ) ^ { 4 } + 86 \left ( - 4 - \sqrt{ 5 } \right ) ^ { 2 } \right )$, $\left ( - 4 + \sqrt{ 5 } , - 599 + 16 \left ( - 4 + \sqrt{ 5 } \right ) ^ { 3 } + \left ( - 4 + \sqrt{ 5 } \right ) ^ { 4 } + 86 \left ( - 4 + \sqrt{ 5 } \right ) ^ { 2 } + 176 \sqrt{ 5 } \right )$
Local Maximum
$\left ( - 4 , 9 \right )$
Point of inflection
$\left ( - 4 - \dfrac { \sqrt{ 15 } } { 3 } , 16 \left ( - 4 - \dfrac { \sqrt{ 15 } } { 3 } \right ) ^ { 3 } - 599 - \dfrac { 176 \sqrt{ 15 } } { 3 } + \left ( - 4 - \dfrac { \sqrt{ 15 } } { 3 } \right ) ^ { 4 } + 86 \left ( - 4 - \dfrac { \sqrt{ 15 } } { 3 } \right ) ^ { 2 } \right )$, $\left ( - 4 + \dfrac { \sqrt{ 15 } } { 3 } , - 599 + 16 \left ( - 4 + \dfrac { \sqrt{ 15 } } { 3 } \right ) ^ { 3 } + \left ( - 4 + \dfrac { \sqrt{ 15 } } { 3 } \right ) ^ { 4 } + \dfrac { 176 \sqrt{ 15 } } { 3 } + 86 \left ( - 4 + \dfrac { \sqrt{ 15 } } { 3 } \right ) ^ { 2 } \right )$
$\left( x+1 \right) \left( x+3 \right) \left( x+5 \right) \left( x+7 \right) = -15$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture