# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x ^{ 2 } -x \right) ^{ 2 } -9x ^{ 2 } +9x-36$
$x ^ { 4 } - 2 x ^ { 3 } - 8 x ^ { 2 } + 9 x - 36$
Organize polynomials
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } - 9 x ^ { 2 } + 9 x - 36$
 Expand the binomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } + \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } - 9 x ^ { 2 } + 9 x - 36$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 36 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 36 }$
$x ^ { 4 } - 2 x ^ { 3 } + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + 9 x - 36$
 Arrange the constant term 
$x ^ { 4 } - 2 x ^ { 3 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + 9 x - 36$
$\left ( x - 4 \right ) \left ( x + 3 \right ) \left ( x ^ { 2 } - x + 3 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 36 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 36 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 36 }$
 Do factorization 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \right )$
$\left ( x + 3 \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \right )$
 Do factorization 
$\left ( x + 3 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
 Sort the factors 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
Solution search results